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Imaging inverse problems

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by a statistical model p(y |x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in significant uncertainty
about x .

For example, in many imaging problems

y = Ax + w ,

for some operator A that is rank-deficient, and additive noise w .
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior pr (x), the posterior distribution of x given y

π(x |y) = p(y |x)pr (x)/pr (y)

models our knowledge about x after observing y .

Two main approaches in terms of incorporating prior information
1 Give a functional form to pr (x); this normally results to π(x |y) being log-concave;

i.e.,
π(x |y) = exp {−φ(x)}/Z ,

where φ(x) is a convex function and Z =
∫

exp {−φ(x)}dx
2 Learn the prior from the available data;
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Quantities of interest

We are normally interested in calculating the following quantities of
interest associated with our posterior distribution

1 argmaxx∈Rd π(x |y) = argminx∈Rd φ(x) (can be computed efficiently,
even in very high dimensions, by (proximal) convex optimisation)

2 Eπ(f ) :=
∫
Rd f (x)π(x |y)dx (one option is to use Markov Chain

Monte Carlo for calculating this)
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Langevin dynamics
Consider the stochastic differential equation

dXt = ∇ log π(Xt)dt +
√

2dWt .

Under appropriate assumptions on ∇ log π(x) one can show that its dynamics are ergodic with
respect to π(x) : Rn 7→ R i.e

lim
T→∞

1

T

∫ T

0
f (Xs)ds = Eπ[f ] :=

∫
Rn

f (x)π(x)dx .
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In an ideal world!!!

Sampling

Go to infinity as quickly as possible (in terms of function evaluations).
Once there produce samples that are i.i.d.
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In real life...

In practice there are a few issues that stop you from the ideal approach

Cannot take time-step arbitrary large (stability)

The numerical invariant measure is not the same as the posterior
(asymptotic bias)

A very simple algorithm

Euler Maryuama: Xn+1 = Xn + ∆t∇ log π(Xn) +
√

2∆tξn, ξn ∼ N (0, Id)
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Priors in computational imaging

π(x |y) ∝ exp{−g1(x)− g2(x)},

where g1(x), g2(x) are lower semicontinuous convex functions from Rn 7→ (−∞,∞]. Typically
g1 is L-Lipschitz differentiable, e.g

g1(x) =
1

2σ2
||y − Ax ||22,

for some observation y ∈ Rp and linear operator A ∈ Rp×n and

g2(x) = α||Bx ||† + 1S (x),

for some norm || · ||†, dictionary B ∈ Rn×n, and convex set S . Often g2 /∈ C1

Question
How can we make sense of gradient algorithms if the gradient doesn’t exist?
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Poor applied mathematician’s approach...

Create a smooth approximation to the prior. Take for example g2(x) = |x |.
Then

gλ2 (x) =


x2

2λ , if |x | ≤ λ

|x | − λ
2 , otherwise
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Convex analysis to the rescue!

For convex functions there is a principled way of dealing with the
non-differentiability of a function using Moreu-Yoshida envelopes

gλ(x) = min
y∈Rn
{g(y) + (2λ)−1 ‖x − y‖2}

The reguralised function now inherits the convexity properties of the
original one and also has a Lipschitz gradient

∇gλ(x) = λ−1(x − proxλg (x)), ||∇gλ(x)−∇gλ(y)|| ≤ λ−1 ‖x − y‖

proxλg (x) = argmin
y∈Rn

{g(y) + (2λ)−1 ‖x − y‖2}
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Smoothed posterior distribution

πλ(x |y) =
exp[−g1(x)− gλ2 (x)]∫

Rd exp[−g1(x)− gλ2 (x)]dx
,

π(x) ∝ exp (−|x |) π(x) ∝ exp
(
−x4

)
π(x) ∝ 1[−0.5,0.5](x)

Figure: True densities (solid blue) and approximations (dashed red).
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MYULA

Xn+1 = Xn −∆t∇g1(Xn)− ∆t

λ

(
Xn − proxλg2

(Xn)
)

+
√

2∆tξn.

p(x) ∝ exp (−|x |) p(x) ∝ exp
(
−x4

)
p(x) ∝ 1[−0.5,0.5](x)

Figure: True densities (blue) and MC approximations (red histogram).
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Stiffness through smoothing

Conundrum

In order to get better approximation to true posterior (λ = 0) one might
need to take λ very small, however this leads to severe time-step
restriction since ∆t ∼ λ.

Possible solutions

Consider explicit numerical schemes that allow for larger (effective)
time-steps ( ∆t ∼ s2λ with s gradient evaluations)

Use an implicit method (∆t can be arbitrarily large)

K. C. Zygalakis (University of Edinburgh) Accelerated MCMC Paris, 28/06/2023 15 / 34



Overview

1 Introduction
Imaging inverse problems
Main approach

2 Implicit Langevin algorithm
Gaussian case
Strongly log-concave case

3 Numerical results
Gaussian mixture
One dimensional distributions
Image deconvolution using a CRR-NN prior

4 Summary and Conlusions

K. C. Zygalakis (University of Edinburgh) Accelerated MCMC Paris, 28/06/2023 16 / 34



Proposed algorithm

Xn+1 = Xn + δ∇ log π (θXn+1 + (1− θ)Xn) +
√

2δξn+1
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Set up

We will now consider

π(x) ∝ exp

(
−1

2
xTΣ−1x

)
, Σ = diag(σ2

1, · · · , σ2
d),

In this case the algorithm becomes

X i
n+1 = R1(zi )X

i
n +
√

2δR2(zi )ξ
i
n, ξin ∼ N (0, 1),

where zi = −∆t/σ2
i and X0 = (X 1

0 , · · · ,X d
0 ) is a deterministic initial

condition, while

R1(z) =
1 + (1− θ)z

1− θz
, R2(z) =

1

1− θz
.
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Analysis Gaussian I

Proposition I

Let π(x) ∝ exp (−0.5xTΣ−1x) with Σ = diag(σ2
1 , ..., σ

2
d), and let Qn be the

probability measure associated with n iterations of the generic Markov kernel.
Then the following bound holds

W2(π;Qn) ≤W2(π; π̃) + C nW2(π̃,Q0)

where

π̃ = N
(

0, 2δ(R2(z))2

[
1

1− R2
1 (z)

])
is the numerical invariant measure and

C =
√

max
1≤i≤d

R1(zi )2.
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Analysis Gaussian II

Proposition II

Let Qn be the probability measure associated with the n-th iteration of the
method starting at X0. Then the number of steps n required such that
W2(π,Qn)2 < ε2 is given by

n ≈


√
κ

2

[
log
(
W2(π,Q0)

)
− log(ε)

]
, θ = 1

2

min
(
dσ2

max
ε2 ,

√
dκσmax

2ε

) [
log(W2(π,Q0))− log(2−1ε)

]
, θ = 1

with δ given by

δ =

{
δ∗, θ = 1

2

max
(
ε2

d ,
2εσmin√

d

)
θ = 1.

where δ∗ = 2√
Lm

= 2σminσmax.
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Analysis Gaussian II

(a) δ against κ (b) n against κ
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Non-linear case

A theorem

Let U = − log π and suppose that U ∈ C 2, m-strongly convex and has gradient
which is L-Lipschitz. For any probability distribution, Q0, let Qn denote the
probability distribution of Xn where X0 ∼ Q0 and Xk is given by

Xn+1 = argminx∈RdF (x ;Xn; ξn+1),

F (x ; u, z) := θ−1U(θx + (1− θ)u) +
1

2δ
‖x − u −

√
2δz‖2.

We assume that each step solved to a tolerance of ε, i.e. that
‖∇F (Xn+1;Xn, ξn)‖ ≤ ε for every n. Then for any initial probability distribution
Q0 with finite second moments we have

W2(Qn, π) ≤C nW2(Q0, π) +
1− C n+1

1− C

1
2δ

2L
3
2

√
d + 2

3Lδ
3
2

√
2d + εδ

1 + θδm

and

C =
√

max
z∈[mδ,Lδ]

R1(−z)2.
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Gaussian mixture I

Figure: Comparison of log π for GMM experiment
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Gaussian mixture II

Algorithm Mean
W2(π, π̃)

Std. Dev.

EXACT 1.4123e-07 1.4448e-07
IMLA (θ = 1/2) 1.4095e-07 1.5540e-07
ILA (θ = 1) 6.2550e-04 1.7596e-06
ULA (θ = 0) 6.6183e-05 7.7698e-07
SKROCK 2.0804e-04 1.3499e-06

Table: Summary of Wasserstein errors
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One dimensional distributions I

Laplace π(x) ∝ e−|x |,

Uniform π(x) = e−ι[0,1](x),

Light-tailed π(x) ∝ e−x
4
.

Alternative representation

Xn+1 = θ−1proxδθU (Xn + θ
√

2δξn)− 1− θ
θ

Xn.
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One dimensional distributions II

(a) Laplace (b) Uniform (c) Light-tailed
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One dimensional disributions III

Distribution SD IMLA SD ILA SD MYULA SD EXACT
Laplace 1.4046 1.4005 1.4356 1.4142
Uniform 0.2923 0.2936 0.2949 0.2887
exp(−x4) 0.5964 0.5777 0.6590 0.5813

Table: Summary of the estimated vs. the exact standard deviations (SD) for each
method (IMLA, ILA and MYULA)
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Image deconvolution using a CRR-NN prior

π(x |y) ∝ exp

(
−‖Ax − y‖2

2σ2
− λ

µ
RΘ(µx)

)
.
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Posterior means
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Pixel standard deviation
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Convergence to equilibrium

Figure: PSNR of the running mean (top left), log π traces (top right) and
autocorrelation of the slowest and fastest component (bottom left and right) for
IMLA, SKROCK, ULA for the castle image
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Conclusions

1 Being able to take large steps is key when dealing with stiffness
arising from regularisation

2 Proposed a new family of methods that for θ = 1/2 provably
accelerate the convergence to (numerical) equilibrium (similar
behaviour to Nesterov method for optimization

3 In the case of non-smooth potentials the new methods are able to
deal directly with regularisation

4 The method involves an implicit step (if this can be done fast the
method is more computationally efficient that current state of the art
SKROCK (and with proof in this case))
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