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PDE problem formulation

−∇
(
a(x, z)∇u(x,w, z)

)
= f(x,w) for x ∈ D

u(x,w, z) = 0 for x ∈ ∂D

▶ x ∈ D ⊂ Rd, d = 1, 2, 3, is the physical variable,
▶ w = (w0, w1, . . . , ws) and z = (z1, z2, . . . , s) are independent

stochastic parameters, wi ∼ N(0, 1) and zj ∼ N(0, 1) i.i.d.,
▶ lognormal coefficient — for aj ∈ L∞(D) suff. smooth

a(x, z) = exp

(
s∑

j=1

zjaj(x)

)
,

▶ f(x,w) =

s∑
i=0

wifi(x) with fi ∈ L2(D), f0 > 0 on D

▶ write y = (y0, y1, . . . , y2s) = (w0, w1, . . . , ws, z1, z2, . . . zs)

Goal: compute cdf of quantity of interest/functional G of the solution

F (t) = P[G(u) ≤ t], for some t ∈ R also pdf f =
dF

dt
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Formulate cdf as an expected value
Key idea: formulate the cdf at t ∈ R as an expected value/integral

F (t) = E
[
ind(t− G(u))

]
=

∫
R2s+1

ind
(
t− G(u(·,y))

)( 2s∏
j=0

ρ(yj)

)
dy,

where ind(t) = 1 if t ≥ 0 and 0 otherwise, and ρ(y) = 1√
2π
e−

y2

2 .

Difficulties:
1. curse of dimensionality because s is large,
2. integrand g(y) = ind(t− G(u(·,y)) is discontinuous, and
3. evaluating the QoI G(u) requires solving the PDE.

Strategy:
1. use quasi-Monte Carlo to tackle high-dimensional integral,
2. use preintegration to “smooth out” the discontinuity, and
3. approximate the PDE using finite elements.
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Quasi-Monte Carlo methods on Rs

N -point randomly shifted lattice rule:∫
Rs

g(y)

(
s∏

j=1

ρ(yj)

)
dy ≈ Qs,Ng =

1

N

N−1∑
k=0

g (τ k) .

▶ τ k = Φ−1

({
kzgen
N

+∆

})
,

▶ {·} is the fractional part,
▶ Φ−1 is the inverse cdf of ρ,
▶ zgen ∈ Ns is the generating

vector,
▶ random shift ∆ ∼ Uni([0, 1)s).
▶ random shifting =⇒ unbiased
▶ good vectors zgen constructed

using component-by-component
(CBC) algorithm

1

1

Figure: 2D lattice rule on [0, 1]2

with N = 55, zgen = (1, 34).
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QMC error
Component-by-component error [Nichols & Kuo 2014]
For g ∈ Hs, N prime and good zgen√√√√√E∆

∣∣∣∣∣∣
∫
Rs

g(y)

(
s∏

j=1

ρ(yj)

)
dy −Qd,Ng

∣∣∣∣∣∣
2 ≤ Cδ,γN

−1+δ∥g∥Hs
, δ > 0.

where g ∈ Hs =: s-dimensional weighted Sobolev space with:
▶ weights: γ := {γu > 0 : u ⊆ {1, . . . , s}},
▶ weight function: ψ : R → R+,
▶ weighted norm

∥g∥2Hs
=

∑
u⊆{1:s}

1

γu

∫
Rs

∣∣∣∣ ∂|u|∂yu
g(y)

∣∣∣∣2
(∏

j∈u
ψ(yj)

)(∏
j ̸∈u

ρ(yj)

)
dy

where {1 : s} := {1, . . . , s} and yu = (yj : j ∈ u).

Problem: g = ind(t− G(u)) ̸∈ Hs, even though G(u) is smooth!
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Preintegration (a.k.a. conditional sampling)
Problem: g = ind(t− G(u)) is not smooth enough for QMC!

Solution: preintegration, i.e., smooth a simple discontinuity,

g(y, z) = ind(t−ϕ(y, z)), for a “sufficiently regular” ϕ : R2s+1 → R,

by integrating out a single (specifically chosen) dimension∫
R2s+1

g(y)

(
2s∏
j=0

ρ(yj)

)
dy

=

∫
R2s

[∫ ∞

−∞
g(y0,y1:2s)ρ(y0) dy0︸ ︷︷ ︸

=:P0g(y1:2s)

](
2s∏
j=1

ρ(yj)

)
dy1:2s

y1:2s := (y1, y2, . . . , y2s).

[Griewank, Kuo, Leövey, Sloan 2018] showed that P0g is as smooth as
ϕ, but in one dimension less (under technical conditions).
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1See also [Griebel, Kuo, Sloan 2010], [Griebel, Kuo, Sloan 2013] and [Griebel, Kuo, Sloan 2017].
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How to do preintegration in practice?
Assume

∂

∂y0
ϕ(y) > 0 for all y ∈ R2s+1, and ϕ(y) → ∞ as y0 → ∞,

then the point of discontinuity in the y0 direction is unique

ξ(y1:2s) = (ξ ∈ R : ϕ(ξ,y1:2s) = t).

Preintegration w.r.t. y0 simplifies to

P0g(y) =

∫ ∞

−∞
ind(t−ϕ(y))ρ(y0) dy0 =

∫ ξ(y1:2s)

−∞
ρ(y0) dy0 = Φ(ξ(y1:2s)).

Numerical preintegration procedure: To evaluate P0g(y1:2s)

1. Compute point of discontinuity ξ(y1:2s)
(analytically/numerically)

2. Approximate the 1D integral
∫ ξ(y)

−∞
ρ(y1) dy1
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Preintegration applied to QoI from PDE

ϕ(y) = G(u(·,y))
where G ∈ H−1(D) and u(x,y) is PDE solution.
For our series RHS

u(x,y) =

s∑
i=0

wiui(x, z)

where

−∇
(
a(x, z)∇ui(x, z)

)
= fi(x) for i = 0, 1, . . . , s

Point of discontinuity is

ξ(y1:2s) =
t−

∑s
i=1wiG(ui(·, z))
G(u0(·, z))

and the preintegration step simplifies to

P0

[
ind(t− G(u)

]
= Φ

(
t−

∑s
i=1wiG(ui(·, z))
G(u0(·, z))

)
,

which is smooth if G(u0(·, z)) > 0 for all z.
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Approximating cdf of QoI using QMC with preintegration

P0

[
ind(t− G(u)

]
= Φ

(
t−

∑s
i=1wiG(ui(·, z))
G(u0(·, z))

)
,

After preintegration we apply QMC in the remaining 2s dimensions

F (t) ≈ FN (t) := Q2s,N

(
P0

[
ind(t− G(u))

])
= Q2s,N (Φ ◦ ξ)

Preintegration + QMC procedure for QoI
For each QMC lattice point τ k = (τk,1, τk,2, . . . , τk,2s):

1. Solve PDEs for u0(τ k) and ũ(τ k) =
∑s

i=1 τk,iui(τ k)

−∇
(
a(τ k)∇u0(τ k)

)
= f0 and −∇

(
a(τ k)∇ũ(τ k)

)
=

s∑
i=1

τk,ifi

2. Compute point of discontinuity ξ(τ k) =
t− G

(∑s
i=1 τk,iui(τ k)

)
G(u0(τ k))

3. Evaluate preintegrated function P0(τ k) = Φ(ξ(τ k))
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Why are probabilities hard to compute using quadrature?

▶ white = 0, grey = 1 and blue is
the line of discontinuity ξ.

▶ QMC points above ξ (blue)
evaluate to 1, and points below
evaluate to 0.

▶ QMC points are designed to be
well-distributed on the whole
domain, but here the important
thing is to resolve the
discontinuity.

▶ Preintegration solves this problem
by first computing ξ.

ϕ

Figure: “Aerial view” of indicator
function in 2D

, with QMC points
in red.
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Error of QMC with preintegration for cdf of QoI

Theorem (Gilbert, Kuo, Srikumar 2023+)
Let F be the cdf of the quantity of interest G(u), for some
G ∈ H−1(D), and suppose

1. Monotone condition: f0 > 0 on D and G(v) > 0 for all v > 0,
2. QMC rule is constructed using CBC algorithm with N prime,

3. uh ≈ u using piecewise linear FE with meshwidth h > 0.

Then the RMSE of the QMC with preintegration approximation,
FN (t) = Q2s,N (P0(ind(t− G(u))) , satisfies√

E
[
|F (t)− FN (t)|2

]
≤ C

(

N−1+δ

+ h2)

, for δ > 0,

where C <∞ depends on δ, s, G, {fi}, and t.

▶ Same rate as integrals/expected values!
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Sketch proof for QMC error

▶ Verify G(u) satisfies the conditions for preintegration theory:

(a) G(u) is suff. smooth,
∂ℓ

∂yℓ0
G(u) ∈ H2s for ℓ = 1, . . . , 2s− 1, and

(b)
∂

∂y0
G(u(·,y)) > 0 for all y ∈ R2s+1.

▶ Abi Srikumar has shown (a) using bounds from, e.g., [Graham,
Kuo, Nichols, Scheichl, Schwab, Sloan 2015].

▶ f0 > 0 =⇒ ∂u

∂y0
= u0 > 0 (by the Strong Maximum Principle)

=⇒ ∂G(u)
∂y0

= G
(
∂u

∂y0

)
> 0 =⇒ (b) (by condition on G)

▶ Preintegration theory implies that P0[ind(t− G(u))] ∈ H2s.
▶ CBC error bound in H2s then gives the desired error bound.

Explicit constant, which depends on γ, δ, s, {∥aj∥L∞}, {fi}.
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Numerical results

−∇
(
a(x,w)∇u(x,w, z)) = zf0(x) + f1(x), x ∈ D

u(x,w, z) = 0, x ∈ ∂D

▶ D = (0, 1)2 (d = 2)

▶ aj(x1, x2) =
α

1 + (jπ)2
sin(jπx1) sin((j + 1)πx2), with α > 0

▶ f0(x1, x2) = sin(πx1) + sin(πx2) and f1 ≡ 1

▶ QoI is point evaluation: G(v) = v(1/
√
(2), 1/

√
(2))

▶ s = 64

▶ PDE solved using linear FEM
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Approximations of cdf and pdf
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Figure: Plot of approximated cdf (left) and pdf (right) for α = 30.
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N convergence
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Figure: Convergence in N for MC, QMC and QMC after preintegration for
F (0), α = 30. (NMC = R×NQMC.)
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Effect of α scaling
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Figure: cdf (top) and pdf (bottom) for α = 1 (left), 15 (middle) and 30
(right).
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Conclusion

Summary
▶ Developed a QMC & preintegration algorithm to approximate

cdf/pdf of QoI from lognormal PDE in UQ.
▶ Preintegration smooths the discontinuity from the indicator

function and QMC methods tackle the curse of dimensionality.
▶ Error analysis gives O(N−1+δ), which is observed in practice.

Extensions
▶ Approximate probability at multiple points {tℓ}, then reconstruct

the cdf, e.g., using polynomial interpolation, splines, etc.
▶ By formulating the density as an integral of a Dirac δ function,

we can also approximate the pdf.
▶ s = ∞
▶ Other UQ problems?
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Thanks for listening!
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Reconciling preintegration and QMC theories
QMC — weighted ANOVA space Ws:

∥g∥2Ws
=

∑
u⊆{1:d}

1

γu

∫
R|u|

∣∣∣∣ ∫
Rd−|u|

∂|u|

∂yu
g(y)ρ(y{1:d}\u) dy{1:d}\u

∣∣∣∣2ψ(yu) dyu
Preintegration — Sobolev space of dominating mixed smoothness Hs:

∥f∥2Hs
=

∑
u⊆{1:d}

1

γu

∫
Rd

∣∣∣∣ ∂|u|∂yu
g(y)

∣∣∣∣2ψ(yu)ρ(y{1:d}\u) dy
Theorem (G., Kuo, Sloan 2022)

Suppose
∫ ∞

−∞

Φ(t)(1− Φ(t))

ψ(t)
dt <∞.

Then the spaces Ws and Hs are equivalent, with

∥g∥Ws ≤ ∥g∥Hs ≤ Cs,γ∥g∥Ws ,

where Cs,γ <∞ depends on s, γ and the reproducing kernel in Ws.
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Recap of assumptions
Assume t ∈ R is fixed.

For s ≥ 2, let ϕ : R2s+1 → R satisfy
1. ∂

∂y0
ϕ(y) > 0 for all y ∈ R2s+1;

2. for each y ∈ R2s+1, ϕ(y) → ∞ as y0 → ∞; and
3. ϕ ∈ Hν

s ∩ Cν(Rd), where ν = (s− 1, 1, . . . , 1) ∈ Ns,
Additionally, suppose that ρ ∈ Cs(R).
For the equivalence and QMC theory assume that ψ and Φ (cdf of ρ)
satisfy ∫ ∞

−∞

Φ(t)(1− Φ(t))

ψ(t)
dt <∞.

Also, define

U := {y1:2s ∈ R2s : ϕ(y0,y1:2s) = t for some y0 ∈ R},
then define ξ : U → R such that

ϕ(ξ(y1:2s),y1:2s) = t.

(Both U and ξ depend on t)
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*technical conditions*
Let q ∈ {0, 1} and for all η ∈ {0, 1}2s consider functions
hq,η : U → R of the form

hq,η(y2:d) :=
(−1)rρ(β)(ξ(y2:d))

∏r
ℓ=1 ∂

αℓϕ(ξ(y1:2s),y1:2s)

[∂1ϕ(ξ(y1:2s),y1:2s)]
r+q

,

with r ∈ N0, α = (αℓ)
r
ℓ=1, αℓ ∈ N2s

0 \{e1,0}, β ∈ N0 satisfying

r ≤ 2|η|+ q − 1, βe0 +

r∑
ℓ=1

αℓ = (r + q − 1,η).

We assume that all such functions hq,η satisfy

lim
y1:2s→∂U

hq,η(y1:2s) = 0,

and there is a constant Bq,η such that∫
U
|hq,η(y1:2s)|2

(
2s∏
j=1
ηj ̸=0

ψ(yj)

)(
2s∏
j=1
ηj=0

ρ(yj)

)
dy1:2s ≤ Bq,η < ∞.


