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Complexity of sampling

Goal: Approximately sample from a distribution 7(dx) o exp(—f(x))dx, f: R? = R

Applications: Bayesian learning, inverse problems and score-based generative

models

Question: For a given algorithm, what is the computational complexity?

Particular interest in high-dimensional setting
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Langevin Monte Carlo (LMC)

Langevin diffusion:
dX, = —Vf(X,)dt + V2 dB,.

Stationary with respect to 7

Approximate using the Euler-Maruyama scheme:

X1 = X — V) + V21061, & ~ N(0,1g).

Bridge between sampling and optimization
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Recent history of LMC

Strongly log-concave setting (TV) [Durmus & Moulines 2016, Dalalyan 2017]

Dissipative setting (Wasserstein) [Cheng et al. 2019]

Logarithmic Sobolev inequality (KL) [Vempala & Wibisono 2019]

Poincaré inequality (Renyi) [Erdogdu et al. 2020, Chewi et al. 2021]
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Recent history of LMC

Strongly log-concave setting (TV) [Durmus & Moulines 2016, Dalalyan 2017]

Dissipative setting (Wasserstein) [Cheng et al. 2019]

Logarithmic Sobolev inequality (KL) [Vempala & Wibisono 2019]

Poincaré inequality (Renyi) [Erdogdu et al. 2020, Chewi et al. 2021]

Little known about LMC in heavy-tailed settings...
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Heavy-tailed measures

m(dx) < e f® dx is heavy-tailed if || Vf(x)|| — 0, as [jx|| — oo
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Convergence rates and tail-growth

Logarithmic Sobolev inequality:

mwngm/www%mm for all € C2°(RY)

d 2
= ZDplm)| _ <= =—Dlpo|lm), forall po € H(R)
t t=0 Cisr

Characterises exponential decay in KL divergence
But, (LSI) implies sub-Gaussian concentration [Bakry et al. 2014]

(LSD)
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Convergence rates and tail-growth

Logarithmic Sobolev inequality:

Ent () < 2Cis; / V()2 w(dx), forall € C2°(RY) (LSD)
d 9 ,
_ < _ =

— dtD(pt||7r)L:O <~ Dlpo|lm), forall po € H(RY)

Characterises exponential decay in KL divergence
But, (LSI) implies sub-Gaussian concentration [Bakry et al. 2014]

[Roberts & Tweedie 1996]:
Tails heavier than exponential —>- diffusion not exponentially ergodic
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Slow start behaviour
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
TF, A Mousavi-Hosseini, Y He, K Balasubramanian, MA Erdogdu (2023)

Result (informal)

Suppose there exists o € [0, 2] such that | Vf(x)|| = O(||x||*~!) and there exists k € N,
4,9, Ao € (1, 00) such that for all py € P(R?),

Ry (pollm) < Ao = Rq(px[m) < 1.

Then, when 1 is sufficiently small, it must hold that

a=2: kn Z In(Ao),

(2=a)?
a€(0,2): kn=>dmo2A, >,
a=0: kn = dexp(Ao/v),
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New diffusion

Summary: the Langevin diffusion is slow on heavy-tailed targets

Idea: Consider a different diffusion
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Weighted LSI

Generalisation of LSI that uses a weighting function  : RY — R_:

Ent (5) < 2Cis1 / (O IV()|2 w(dx), for all o € C2(RY),

Characterises exponential decay for the weighted Langevin diffusion,

X, = —k(X)VF(X)dt + Vi (X,)dt + v/2#(X,)dB. @)

Satisfied by a variety of heavy-tailed measures:
E.g. generalized Cauchy, s-concave and subexponential

P Cattiaux et al. (2010); P Cattiaux, A Guillin, LM Wu (2011); SG Bobkov, M
Ledoux (2009)
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Discretisation

Difficult to approximate this diffusion

— Coefficients kVf, Vk and « are non-globally Lipschitz
— Euler-Maruyama scheme blows up in finite time as  — 0

— Non-constant diffusion coefficient

Idea: Use an adaptive Euler-Maruyama scheme
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Adaptive step-size and time-change

Can simulate using a time-change/adaptive step-size:

dXy = —k(Xy) Vf(Xe)dt + VK (X)dt + \/2k(X¢)dB;

dv. = (- Vf(¥) + Vlnm(YQ)dt +V2dB,
dée = w(Y,)"1dt

Due to B Oksendal (1990): X; ~ Y109
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Langevin Monte Carlo

Input: potential f, initial yo ~ po

For each iteration, k < kpax:

() Update iterate: yx = yi_1 — nVf (1) + v211 &
(i) Collect the sample y;
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Our algorithm

Input: potential f, initial yy ~ po, weighting function x

For each iteration, k < kpax:

(i) Update iterate: yx =yx_1 —nVf(Vk_1) +nVInk(yi_1) + V21 &
(i) Collect the sample y;
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Our algorithm

Input: potential f, initial yy ~ po, weighting function x

For each iteration, k < kpax, such that ¢p_1 < dpax:

() Update iterate: yy = yx_1 — nVf(x—1) + 1V Inr(yr1) + vV2n&
(i) Update clock: ¢ = ¢p_1 + nk(yx_1)~!
(i) If |¢r/n| > |¢r_1/n], collect the sample yx
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Our algorithm

Input: potential f, initial yg ~ po, weighting function s

For each iteration, k < kp,.x, such that ¢p_1 < dpax:

() Update iterate: y = yx_1 — nVf(Vx—1) + 1V Inr(yr 1) +v2n&
(ii) Update clock: ¢ = ¢p_1 + k(yx_1)~ !
(iii) If ¢ | > | dr_1], collect the sample y;

— Discretisation of the SDE dX; = —k(X¢) Vf(X¢)dt + Vr(X¢)dt + /2k(X¢)dBe

— Adaptive EM discretisation with step-size oc s (x) L.
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Our algorithm

Input: potential f, initial yg ~ po, weighting function

For each iteration, such that ¢_1 < ¢max:

() Update iterate: yx = yx_1 — nVf(yx—1) + 1V Inr(yr_1) + v2n&
(ii) Update clock: ¢y = dr_1 + £(Yi_1) "
(iii) If ¢ | > |¢dr_1], collect the sample y;

— Generalisation of LMC: x = 1 recovers LMC

— k is chosen according to the tail-growth of the target
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How to choose x?

Using the framework of functional inequalities
E.g. Bakry calculus, Lyapunov conditions, bounded perturbations, ...

Target density ‘ K(x)
exp(—||x[|%), « € (0,2] (|2~
(1 + [lx|?)= (1 + [lx]2)?

V(x)~(@+) vV convex, o > 0 | (1 + ||x||?) log(e + [Ix/|?)
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Analysis: assumptions

(A1) Weighted LSI with weighting « : R? — R satisfying s(x) < c(1 + |jx||?)"/?
for some ¢c,r > 0

(A2) (Moments) There exists p € (r,c0) such that o, = (|| - [P)/P < oo

(A3) V In x is L-Lipschitz and D3f < Mx!'/2 holds a.e. for some ¢ € R
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Analysis: continuous-time algorithm

Result (simplified)

Suppose (A1)-(A3) hold, 1 < o* < p/r and

<4Ra(§0||7r)> aZLSI7 tmax > 4¢max<€71 <8(a = 1) V exp((a - 1>L¢max)))

for some ¢ > 0, then Ry (p||7) < e.

¢max > In

E.g. for R, (po||7) > 1, it is sufficient to have

tnax = é(g—(aCLSI/2+1)Ra(pO ||7T)aCLSI/2)
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Analysis: discrete-time algorithm

Result (simplified)

Let q < 2p and consider the same setting with o = 2, and assume further that
n< (M+L)"td 2 e

max

and kiax = |tmax/1], Wq([)’(;:j;‘, m) < ope.

E.g. for Ry(po||w) > 1, it is sufficient to have
ke = ©(e 2Cs/2HRy (po | m)>1d(M + L))
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Example: generalized Cauchy

m(dx) o (14 x]|?)~Fdx, v>2

— LMC: O(d55_4/"+1 exp |4(2q — 1)V_1Roo(P0H7T)D in Renyi
— TULA: O(e2ddd 11 1n(D(po|m)e 1)) in KL
— Our work: O((d 4 v)0d*c=17/4R(po||7)) for v > 6 using r(x) = (1 + ||x||2)?

20/23



Geometry of the diffusion

X, = ( — k() VFX) + Vn(XQ)dt + /26 (%) dB:

— Riemannian Langevin diffusion on (R¢, dij/ k)

k(x) = (1+ ||x||*)> = metric induced by stereographic projection
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Geometry of the algorithm

Sampling methods that induce a Riemannian structure:
Standard LMC: G = d;

Our algorithm: G = (k)14

Mirror LMC: G = (D?®)~14;

Variable transformation with h : (M,g) = R%: G = (h~1) x g

22/23



Geometry of the algorithm

Sampling methods that induce a Riemannian structure:
Standard LMC: G = d;

Our algorithm: G = (k)14

Mirror LMC: G = (D?®)~14;

Variable transformation with h : (M,g) = R%: G = (h~1) x g

Variable transformation geometry C weighted geometry G = (k) ~14;
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Summary

— We propose a generalisation of LMC that can adapt to different tail-growths
— Based on weighted functional inequalities and adaptive EM

— Analysis gives polynomial dependence on d and ¢! and initial Renyi in
heavy-tailed settings

Future directions Riemmanian LMC based on Adaptive EM schemes:
— Simulating Riemannian Langevin diffusions based on adaptive EM schemes

Super light-tailed targets
Non-smooth potentials
Sampling from Riemannian manifolds

— Design accept/reject mechanism
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