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Nabil Kahalé Unbiased time-average estimators for Markov chains



Introduction
Conventional time-average estimators

Unbiased time-average estimators
Examples

Numerical experiments
Conclusion

Time-Average Estimators
Previous work
Summary of results
Relation with previous work

Definition

Consider a Markov chain (Xi , i ≥ 0) with state-space F

X0 is deterministic

Let f : F → R be a measurable function on F

Assume that E((f (Xi))
2) < ∞ for i ≥ 0.

For k ≥ 1, define the time-average estimator

fk :=
1

k − b(k)

k−1∑

i=b(k)

f (Xi)

b(k) is a burn-in period with 0 ≤ b(k) ≤ k/2
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Applications of time-average estimators

fk estimates the limit μ of E(f (Xm)) as m → ∞, when it
exists

fk is usually biased: E(fk ) 6= μ

Time-average estimators have been used in

sampling from a posterior distribution (Tierney 1994)

computing the volume of a convex body (Cousins and
Vempala 2016)

estimating the steady-state metrics of time-dependent
queues (Whitt and You 2019)
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Long runs versus short runs

(Whitt 1991) finds that

One long time-average estimator is more efficient than
several independent replications of short time-average
estimators

If the simulation length is large enough to obtain
reasonable estimates of μ, then several independent
replications are almost as efficient as one longer run
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Confidence intervals

Because of the bias and since the f (Xi)’s are usually
correlated, calculating confidence intervals from
time-average estimators is challenging

The method of batch means divides fk into several
consecutive batches

It calculates an asymptotic confidence interval from the
averages over each batch

The quality of this confidence interval depends on the
extent to which these averages are i.i.d. and
Gaussian (Asmussen and Glynn 2007, p. 110)
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Nabil Kahalé Unbiased time-average estimators for Markov chains



Introduction
Conventional time-average estimators

Unbiased time-average estimators
Examples

Numerical experiments
Conclusion

Time-Average Estimators
Previous work
Summary of results
Relation with previous work

Bias and mixing time

The bias of fk is related to the mixing time

Explicit convergence rates to the steady-state distribution
have been established for many Markov chains (Diaconis
and Stroock 1991, Sinclair 1992, Cousins and
Vempala 2016, Kahalé 2019, Barkhagen, Chau, Moulines,
Rásonyi, Sabanis and Zhang 2021)

The mixing time of other Markov chains arising in practice
is not formally known (Diaconis 2009)
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Overview of results

Under suitable conditions, we first construct a Randomized
Multilevel Monte Carlo (RMLMC) unbiased estimator Zk of
the bias

That is, E(Zk ) = μ − E(fk )

Combining Zk with fk yields an unbiased estimator f̂k of μ

That is, E(f̂k ) = μ
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Properties of estimators

E(Zk
2) < ∞

E(f̂ 2
k ) < ∞

Zk can be simulated in finite expected time

f̂k can be simulated in finite expected time T̂k

Under certain assumptions, for sufficiently large k

T̂kVariance(f̂k ) ≤ (1 + ε)kVariance(fk )

Under suitable conditions, f̂k can be constructed without
any precomputations

In our numerical experiments, fk is about twice as efficient
as f̂k for large values of k
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Relation with (Glynn and Rhee 2014)

Our construction is based on
a coupling assumption and a time-reversal transformation
inspired from (Glynn and Rhee 2014)
A RMLMC estimator introduced by (Rhee and Glynn 2015)

Assuming that f is Lipschitz and that X is ‘contractive on
average’, (Glynn and Rhee 2014) construct
square-integrable unbiased RMLMC estimators for the
steady-state expectation of Markov chain functionals

Their method is not based on time-averaging

Our approach does not require f to be Lipschitz or X to be
contractive on average
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Relation with (Jacob, OLeary and Atchadé 2020)

(Jacob, OLeary and Atchadé 2020) study unbiased Markov
Chain Monte Carlo methods that use time-averaging

They use the exact coupling of two Markov chains together
with a telescopic sum argument of (Glynn and Rhee 2014)

In contrast, our approach uses approximate coupling
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Notation

Assume that there are i.i.d. random variables Ui , i ≥ 0,
and a measurable function g such that

Xi+1 = g(Xi , Ui)

Thus, there is a measurable function Gi with

Xi = Gi(X0; U0, . . . , Ui−1)

Extend (Ui , i ≥ 0) to (Ui , i ∈ Z) and assume it is i.i.d.
For i , m ∈ Z with m ≤ i , let

Xm:i := Gi−m(X0; Um, Um+1, . . . , Ui−1)

X0:i = Xi for i ≥ 0
For i , m ∈ Z with m ≤ i , we have Xm:i ∼ Xi−m

Nabil Kahalé Unbiased time-average estimators for Markov chains



Introduction
Conventional time-average estimators

Unbiased time-average estimators
Examples

Numerical experiments
Conclusion

The coupling assumption
Convergence properties

Notation

Assume that there are i.i.d. random variables Ui , i ≥ 0,
and a measurable function g such that

Xi+1 = g(Xi , Ui)

Thus, there is a measurable function Gi with

Xi = Gi(X0; U0, . . . , Ui−1)

Extend (Ui , i ≥ 0) to (Ui , i ∈ Z) and assume it is i.i.d.
For i , m ∈ Z with m ≤ i , let

Xm:i := Gi−m(X0; Um, Um+1, . . . , Ui−1)

X0:i = Xi for i ≥ 0
For i , m ∈ Z with m ≤ i , we have Xm:i ∼ Xi−m
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Example: Autoregressive sequence

X0 = 0

For i ≥ 0
Xi+1 =

√
ηXi + Ui

η ∈ [0, 1)

Ui , i ≥ 0, are i.i.d. with E(Ui) = 0 and Variance(Ui) = 1
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Main Assumption

(Xm:i , i ≥ m) is a Markov chain that is a copy of (Xi , i ≥ 0),
and is driven by (Ui , i ≥ m), for any given m ∈ Z
For m ≤ 0 ≤ i , the last i random variables driving the
calculation of Xi and Xm:i , i.e., U0, . . . , Ui−1, are the same
Assumption 1 (A1). There is a positive decreasing

sequence (ν(i), i ≥ 0) such that

∞∑

i=0

√
ν(i)
i + 1

< ∞,

and, for any i , m ∈ Z with m ≤ 0 ≤ i ,

E((f (Xm:i) − f (Xi))
2) ≤ ν(i).
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Autoregressive sequence Revisited

When f (x) = x , Assumption A1 holds with

ν(i) =
ηi

1 − η

for i ≥ 0
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Convergence properties of fk

For j ≥ 0, set

ν(j) :=
∞∑

i=j

√
ν(i)
i + 1

Theorem

Under Assumption A1, E(f (Xh)) has a finite limit μ as h → ∞.
For k > 0,

|E(fk ) − μ| ≤
ν(bb(k)/2c)
√

k − b(k)
,

and

E((fk − μ)2) ≤
26(ν(0))2

k − b(k)
.
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Assumptions

Let (Yl , l ≥ 0) with E(Y 2
l ) < ∞

Assume that E(Yl) → μY as l → ∞

Intuitively, assume that Yl ≈ Yl ′ for 0 ≤ l ≤ l ′ and large l

Let (pl , l ≥ 0) be a probability distribution such that pl > 0
for l ≥ 0
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Let N ∈ N be a random variable independent of (Yl , l ≥ 0)
such that Pr(N = l) = pl for l ≥ 0

Theorem ((Rhee and Glynn 2015))

Set Z := (YN − YN−1)/pN, with Y−1 := 0. If

∞∑

l=0

E((Yl − Yl−1)
2)

pl
< ∞

then E(Z ) = μY , and

E(Z 2) =
∞∑

l=0

E((Yl − Yl−1)
2)

pl
.
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Construction and properties of fk ,l

For k ≥ 1 and l ≥ 0, let

fk ,l :=
1

k − b(k)

k−1∑

i=b(k)

f (X−k(2l−1):i)

In particular, fk ,0 = fk
As X−k(2l−1):i ∼ Xi+k(2l−1), Theorem 1 implies that

lim
l→∞

E(fk ,l) = μ

For 0 ≤ l < l ′, the last i + k(2l − 1) copies of U0 used to
calculate X−k(2l−1):i and X−k(2l′−1):i are the same
Intuitively speaking, fk ,l ′ ≈ fk ,l for large l
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Construction of Zk

For l ≥ 2, set

pl =
ν(k2l−2) − ν(k2l−1)

2lν(k)
,

Let

p1 = (1 −
∞∑

l=2

pl)/3 and p0 = 2p1

Let N ∈ N is a random variable independent of (Ui , i ∈ Z)
with Pr(N = l) = pl for l ≥ 0
For k ≥ 1, let

Zk :=
fk ,N+1 − fk ,N

pN
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The single-term estimator
Construction of f̂k

Properties of Zk

Let Tk be the expected time required to simulate Zk

Lemma

Suppose that A1 holds. For k ≥ 1, we have E(fk + Zk ) = μ,
Tk ≤ 9k, and

kE(Z 2
k ) ≤ 20(ν(bb(k)/2c))2
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The single-term estimator
Construction of f̂k

Construction and properties of f̂k

Let Q ∼ Bernoulli(q) independent of (fk , Z ′
k ) with

q =
ν(bb(k)/2c)

ν(0)

Let Z ′
k be a copy of Zk independent of fk

Set
f̂k := fk + q−1QZ ′

k

Theorem

Suppose A1 holds and k ≥ 1. Then E(f̂ 2
k ) < ∞ and E(f̂k ) = μ.

Furthermore T̂k ≤ k + 9qk, and

T̂kVariance(f̂k ) ≤ kVariance(fk ) + 8610(ν(0))2q
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GARCH volatility model
GI/G/1 queue
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GARCH volatility model

The daily volatility σi satisfies, for i ≥ 0,

σi+1
2 = w + ασi

2U2
i + βσi

2

w , α and β are positive constants with α + β < 1

Ui ∼ N(0, 1) are i.i.d.

Given σ0 ≥ 0 and z ∈ R, we want to estimate
limi→∞ Pr(σ2

i > z)

Xi = σ2
i

f (u) = 1{u > z} for u ∈ R

Assumption A1 holds with ν(i) = c(α + β)i/2 for some
constant c
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GI/G/1 queue

For n ≥ 0, let An, Vn and Xn be the arrival time, service
time and waiting time of customer n

The waiting times satisfy the Lindley recursion

Xi+1 = max(0, Xi + Ui),

where Ui := Vi − Ai+1 + Ai

We want to estimate limi→∞ E(Xi)

f is the identity function

Under suitable conditions, Assumption A1 holds with
ν(i) = γηi for i ≥ 0, where γ and η < 1 are constants
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High-dimensional Gaussian vectors

Let Σ be a d × d positive definite matrix with diagonal
entries equal to 1
(Kahalé 2019) approximately simulates X ∼ N(0, Σ)

Let j be a random integer uniformly distributed in {1, . . . , d}
Let e ∈ Rd be the vector whose j-th coordinate is 1 and
remaining coordinates are 0
Let (ei , i ≥ 0) be i.i.d. copies of e
Let (gi , i ≥ 0) be i.i.d. with gi ∼ N(0, 1)

Set X0 = 0 and, for i ≥ 0, let

Xi+1 = Xi + (gi − eT
i Xi)(Σei)

For suitable functions f , Assumption A1 holds
μ = E(f (X )), with X ∼ N(0, Σ)
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Bias versus standard deviation
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Figure: Absolute bias and standard deviation of time-average
estimators with 106 independent replications and burn-in period
b(k) = bk/10c.
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Performance of f̂k in GARCH volatility model

Table: Estimation of limi→∞ Pr(σ2
i > z) in a GARCH volatility model

with b(k) = bk/10c, α = 0.05, β = 0.92, σ0
2 = 2 × 10−5,

w = 1.2 × 10−6 and z = 4 × 10−5.

k burn-in Method μ Std RMSE Cost Cost × MSE
50 5 LR 0.1126 1.8 × 10−1 3.4 × 10−1 5.00 × 101 5.8

ULR 0.398 ± 0.003 1.4 × 100 1.4 × 100 1.02 × 102 200
SULR 0.400 ± 0.002 1.2 × 10−3 1.2 × 10−3 1.01 × 108 140

200 20 LR 0.3319 2.1 × 10−1 2.2 × 10−1 2.00 × 102 9.5
ULR 0.3991 ± 0.0008 4.2 × 10−1 4.2 × 10−1 4.03 × 102 71
SULR 0.3993 ± 0.0007 3.8 × 10−4 3.8 × 10−4 3.96 × 108 58

800 80 LR 0.3969 1.2 × 10−1 1.2 × 10−1 8.00 × 102 11
ULR 0.3996 ± 0.0002 1.2 × 10−1 1.2 × 10−1 1.59 × 103 23
SULR 0.3996 ± 0.0002 1.2 × 10−4 1.2 × 10−4 1.59 × 109 23

3200 320 LR 0.39963 6.1 × 10−2 6.1 × 10−2 3.20 × 103 12
ULR 0.39970 ± 0.0001 6.1 × 10−2 6.1 × 10−2 6.34 × 103 23
SULR 0.39963 ± 0.0001 6.1 × 10−5 6.1 × 10−5 6.28 × 109 23
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Performance of f̂k in a M/Hk/1 queue

Table: Estimation of E(Xi) in an M/Hk/1 queue with b(k) = bk/10c,
Poisson arrivals at rate λ = 0.75, service time distribution
Pr(Vn ≥ z) = pe−2pz + (1 − p)e−2(1−p)z for z ≥ 0, where p = 0.8875

k burn-in Method μ Std RMSE Cost Cost × MSE
50 5 LR 4.35 4.9 × 100 5.9 × 100 5.00 × 101 1.7 × 103

ULR 7.53 ± 0.07 3.8 × 101 3.8 × 101 1.00 × 102 1.5 × 105

SULR 7.53 ± 0.07 3.8 × 10−2 3.8 × 10−2 9.87 × 107 1.4 × 105

200 20 LR 6.547 5.8 × 100 5.8 × 100 2.00 × 102 6.8 × 103

ULR 7.51 ± 0.03 1.7 × 101 1.7 × 101 4.00 × 102 1.1 × 105

SULR 7.50 ± 0.03 1.6 × 10−2 1.6 × 10−2 4.00 × 108 1.1 × 105

800 80 LR 7.412 4.2 × 100 4.2 × 100 8.00 × 102 1.4 × 104

ULR 7.503 ± 0.01 5.3 × 100 5.3 × 100 1.59 × 103 4.4 × 104

SULR 7.516 ± 0.01 5.4 × 10−3 5.4 × 10−3 1.60 × 109 4.7 × 104

3200 320 LR 7.512 2.3 × 100 2.3 × 100 3.20 × 103 1.6 × 104

ULR 7.511 ± 0.004 2.3 × 100 2.3 × 100 6.29 × 103 3.2 × 104

SULR 7.513 ± 0.004 2.3 × 10−3 2.3 × 10−3 6.70 × 109 3.4 × 104
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Performance of f̂k in a GI/G/1 queue

Table: Estimation of limi→∞ Pr(Xi > 1) in a GI/G/1 queue with
b(k) = bk/10c, interarrival time Dn and service time Vn distributions
Pr(Dn ≥ z) = (1 + z)−7 and Pr(Vn ≥ z) = (1 + z/0.8)−7 for z ≥ 0

k burn-in Method μ Std RMSE Cost Cost × MSE
50 5 LR 0.2004 2.4 × 10−1 2.7 × 10−1 5.00 × 101 3.8

ULR 0.33 ± 0.002 1.2 × 100 1.2 × 100 1.00 × 102 135
SULR 0.334 ± 0.002 1.1 × 10−3 1.1 × 10−3 1.00 × 108 131

200 20 LR 0.302 2.0 × 10−1 2.1 × 10−1 2.00 × 102 8.4
ULR 0.3327 ± 0.0008 4.0 × 10−1 4.0 × 10−1 3.93 × 102 64
SULR 0.3323 ± 0.0008 4.0 × 10−4 4.0 × 10−4 3.97 × 108 63

800 80 LR 0.3298 1.2 × 10−1 1.2 × 10−1 8.00 × 102 12
ULR 0.3321 ± 0.0003 1.3 × 10−1 1.3 × 10−1 1.64 × 103 29
SULR 0.3321 ± 0.0003 1.3 × 10−4 1.3 × 10−4 1.63 × 109 28

3200 320 LR 0.33222 6.3 × 10−2 6.3 × 10−2 3.20 × 103 13
ULR 0.33221 ± 0.0001 6.3 × 10−2 6.3 × 10−2 6.35 × 103 25
SULR 0.33224 ± 0.0001 6.3 × 10−5 6.3 × 10−5 6.33 × 109 25
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Conclusion (I)

Under a coupling assumption, we have established bounds
on the bias and mean square error of fk
We have built an unbiased estimator Zk for the bias of fk
Combining Zk with fk yields an unbiased estimator f̂k of μ

Zk and f̂k are square-integrable with have finite expected
running time
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Conclusion (II)

For a suitable choice of parameters, f̂k is asymptotically at
least as efficient as fk
Under certain conditions, Zk and f̂k can be built without any
precomputations

In several examples our approach is provably efficient

Numerical experiments are consistent with theoretical
findings
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Nabil Kahalé Unbiased time-average estimators for Markov chains



Introduction
Conventional time-average estimators

Unbiased time-average estimators
Examples

Numerical experiments
Conclusion

Rhee, C.-h. and Glynn, P. W. (2015). Unbiased estimation with
square root convergence for SDE models, Operations
Research 63(5): 1026–1043.

Sinclair, A. (1992). Improved bounds for mixing rates of Markov
chains and multicommodity flow, Combinatorics, probability
and Computing 1(04): 351–370.

Tierney, L. (1994). Markov chains for exploring posterior
distributions, the Annals of Statistics pp. 1701–1728.

Whitt, W. (1991). The efficiency of one long run versus
independent replications in steady-state simulation,
Management Science 37(6): 645–666.

Whitt, W. and You, W. (2019). Time-varying robust queueing,
Operations Research 67(6): 1766–1782.
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