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@ Framework and Motivation



Framework

e Goal: Approximate efficiently E [¢(X(T))]
o Setting:
» Given a (smooth) ¢ : R? » R, the function g:R? —» R:
% Indicator functions: g(x) = L(4(x)>0) (probabilities, pricing
digital /barrier options, . ..)
% Dirac Delta functions: g(x) = d¢¢(x)-0) (densities, ...)
» X: solution process of a d-dimensional system of SDEs,
approximated by X (via a discretization scheme with N time steps),
E.g., stochastic volatility model: E.g., the Heston model

dX, = pXydt + /0, X, dWX
dvy = k(0 = vy )dt + £/ dWY

(WtX , Wt”): correlated Wiener processes with correlation p.
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» X: solution process of a d-dimensional system of SDEs,
approximated by X (via a discretization scheme with N time steps),
E.g., stochastic volatility model: E.g., the Heston model

dX, = pXydt + /0, X, dWX
dvy = k(0 = vy )dt + £/ dWY

(WtX , Wt”): correlated Wiener processes with correlation p.
e Challenge: High-dimensional, non-smooth integration problem

E[oX™()]- [

with G(-) maps N x d random inputs to g(XAt(T)); and pgxn(2z):
joint density function of z.

. G(z)pde(z)dzg) . dz](\}) . dz%d) . dz](\?),

dx



Motivation

Table 1: Complexity comparison of the different methods for approximating

E[g(X

(T'))] within a pre-selected error tolerance, TOL. Given the same initial

problem, and using a weak order one scheme, E.g, the Euler-Maruyama scheme.

Method General Complexity Optimal Complexity
MC O (TOL™®) O(TOL™)
MLMC O(TOL™7), L<p<1 o(To1?)
51 1-13%5 1
Quasi-MC (QMC) O(TOL ) 0<é<i o (ro1-?)
Adaptive sparse | O(TOL™"7), p>0 B
grids quad (ASGQ) ( ) o (TOL 1)

o Sufficient Regularity Conditions for Optimal Complexity:
» MLMC (Cliffe et al. 2011; Giles 2015):

g is Lipschtiz = (sub) canonical complexity: O (TOL’Z) up to log terms.

> QMC (Dick, Kuo, and Sloan 2013):

@ g belongs to the d-dimensional weighted Sobolev space of functions with

square-integrable mixed (partial) first derivatives.
@ High anisotropy between the different dimensions.

» ASGQ (Chen 2018; Ernst, Sprungk, and Tamellini 2018):

p is related to the order of bounded weighted mixed (partial) derivatives of g

and the anisotropy between the different dimensions.
= ASGQ Complexity: O (T()L l") (O (TOL_l) when p > 1).




Our Proposed Strategy to
Recover Optimal Complexities

@ For QMC/ASGQ:
Christian Bayer, Chiheb Ben Hammouda, and Rail Tempone.
“Numerical smoothing with hierarchical adaptive sparse grids and
quasi-Monte Carlo methods for efficient option pricing”. In:
Quantitative Finance 23.2 (2023), pp. 209-227.

@ For MLMC (Topic of the Talk)

Christian Bayer, Chiheb Ben Hammouda, and Rail Tempone.
“Multilevel Monte Carlo with Numerical Smoothing for Robust
and Efficient Computation of Probabilities and Densities”. In:
arXiv preprint arXiv:2003.05708 (2022).

/A The numerical smoothing idea in (Bayer, Ben Hammouda, and

Tempone 2023) and (Bayer, Ben Hammouda, and Tempone 2022) is

similar. However, the analysis is different.

/\ For a survey on the different smoothing/adaptivity techniques for
MLMC: see (Giles 2023).



© The Numerical Smoothing Idea



Numerical Smoothing Steps

Motivating Example:

At
Elg(Xr )] =7
o g:R? > R nonsmooth function: (E.g., g(x) = 1(4(x)20))
° X?t (At = %) Euler discretization of d-dimensional SDE , E.g.,
dX = a;(X,)dt + £9 by (X,)dw D,
where {WU )}?:1 are standard Brownian motions.
°

X =Xp (AawD, o aw® L Aaw D AawD)

=AW
—At
=X, (Z), Z=(Z)¥ ~N(0,Isn).

e The discontinuity is in (N x d)-dimensional space characterised by

$(Xz' (Z)) = 0.




Numerical Smoothing Steps

@ Identify hierarchical representation of integration variables = locate
the discontinuity in a smaller dimensional space
() Xr' (AW) =X7'(2), Z = (Z) ~ N(0, L ):
s.t. “Zq = (Zfl)7 ce Zfd)) (coarse rdvs) substantially contribute even
for At - 07, through hierarchical path generation (Brownian bridges
/ Haar wavelet construction)

= Discontinuity in d-dimensional space instead of
(N x d)-dimensions.

Haar wavelet construction in one dimension
For i.i.d. standard normal rdvs Zy, Z, 1, n € Ng, k=0,...,2" — 1, we define the
(truncated) standard Brownian motion

N 2"-1

WY =200 () + Y Y Z 1 U i(t).
n=0 k=0

with W_;(-) and ¥, ;(-) are the antiderivatives of the Haar basis functions.

/\ Our approach is different from previous MLMC techniques which
uses conditional expectation at the final step w.r.t AW = smoothing
effect vanishes as At — 0.



Numerical Smoothing Steps

@ Identify hierarchical representation of integration variables =
locate the discontinuity in a smaller dimensional space

(b) If d > 1, introduce a linear mapping using A: rotation matrix whose
structure depends on the function g.

Y = AZ,.

E.g., for an observable g(x) = Li(sa  c,a.(T)-K)20): @ suitable Ais a

rotation matrix, with the first row leading to Y7 = Zgzl Zfi) up to
rescaling without any constraint for the remaining rows
(Gram-Schmidt procedure).

= Discontinuity in 1-dimensional space instead of d-dimensions.

(1)

=y (y-1,2_,,.. ,ZE(?)Z the exact discontinuity location s.t

S(Xp') = (X (y1y-1.2%0 .2y =0, (1)

Notation

» x_;: vector of length /N -1 denoting all the variables other than z;
in x e RV.



Numerical Smoothing Steps

E[g(X(T))]~E [g(iA”(T))]
B /Rdw (Z)pde(Z)dz(l) e dz(l) . .dz(d> .. ,dz(d>

= /Rd]\_l I(y-l,zﬂ),--- )Pd 1(y-1)dy-1pan- d(Z_1 7-»-725(?)01Z£11)»-»dz(_?
=B [I(Y,h z0 . ,zﬂ?)] ~E [T(Y,l,zfﬁ) AAAAA zﬁ‘?)] , (2)
(s}
I(y-1, Z_17-~- (d)) fG(Ul y-1,% _1 ,---,Z(_dl))pl(yl)d?/1

vl +o0
= [ 6yaaS Dy ¢ [T Gy 2 D))
- g
Mag
“I(Y—I:Z(,ll) ----- (d)) = Z nkG(Ck(Ul%y 1,z(1), ,Z(‘?)
k=0

© Compute the remaining (dN - 1)-integral (expectation) in (2) by MLMC.
Notation

G maps N x d Gaussian random inputs to g(iAt(T));

yf(y,l,z(l), z(j)): the exact discontinuity location (see (1))

Ji(y-1, zEll), .. ,ZE?)Z the approximated discontinuity location via root finding.
My,ag: number of Laguerre quadrature points (i, € R, and weights 7y;

1 T
paxn(2) = Gryawme 2



Some Remarks

o A In (Bayer, Ben Hammouda, and Tempone 2023), we show that
I(-) in (2) is C* = optimal complexity for ASGQ and QMC.

e /\ Here, for MLMC we need different analysis/arguments to show
that we get the optimal complexity of MLMC (see next slides).

@ The numerical smoothing can be extended to the case of finitely
many roots.



Extending Numerical Smoothing for
Density Estimation

Goal: Approximate the density px at u, for a stochastic process X
px(u) =E[§(X -u)], dis the Dirac delta function.

A Without any smoothing techniques (regularization, KDE,...)
MC/MLMC fail due to the infinite variance caused by the Dirac

distribution function, 6(-).

Strategy in (Bayer, Ben Hammouda, and Tempone 2022):
Conditioning with respect to Z_; (randomness related to the
Brownian bridge)

px (u) = %E [exp(— (Yf(u))z/Z) %(u)”
e (- (v 00) 2) ddi(mﬂ

Y (2;Z_1): the exact singularity; Y, (z;Z_1): the approximated
singularity obtained by solving YAt(T:Y*(m), Z_1)=x.

R

1
V2T




Why not Kernel Density Estimator (KDE)
in Multiple Dimensions?

Similar to approaches based on MLMC with parametric regularization (Giles,
Nagapetyan, and Ritter 2015) or QMC with KDE techniques (Ben Abdellah et al.
2021).

This class of approaches has a pointwise error that increases exponentially with
respect to the dimension of the state vector X.

For a d-dimensional problem, a KDE with a bandwidth matrix, H = diag(h,...,h)

MSE ~ s M h™4 + coh®. (3)

M is the number of samples, and ¢; and c¢o are constants.
Our approach in high dimension: For u ¢ R¢

px(u) = E[5(X ~u)] = E [pg (Y* () |det (J (w))]]
mE[pd (7*(11)) |det (j(u))|], (4)

> Y*(u;-): the exact discontinuity; ?*(u; -): the approximated discontinuity.
> J is the Jacobian matrix, with J;; = g%; pa(+) is the multivariate Gaussian density.
J
Exact conditioning with respect to the remaining Brownian bridge noise = the

smoothing error in our approach is insensitive to the dimension of the problem.



© Analysis of Multilevel Monte Carlo with Numerical Smoothing



Multilevel Monte Carlo (MLMC)
(Heinrich 2001; Kebaier 2005; Giles 2008)

o Setting
» A hierarchy of nested meshes of [0,7] (sequence of finer discretizations).
» Aty = K™ Atg: the time steps size for levels £> 0; K>1, K e N. (At > ... > Atp)
> Xyi= iAt( : The approximate process generated using a step size of Aty.

e MLMC idea

L
E[g(X(T))] »E[¢(X(T))] = E[9(Xo(T)]+ 3 E[9(Xe(T)) - 9(Xe-1(T))] (®)

N 51

Var[g(Xo(T))] > Var[g(Xe(T)) - 9(Xp-1(T))] ~ asl #
My > My~ ast A~

—~ L
o MLMC estimator: QMM .= 5 Q,, (sample independently each term of (5) with MC)
=0

. M,

Qo = Z g(XO(T wmn)) @l =

O mo=1

1 M, o _
7 21 (9Xe(T500m,)) - 9(Xe=1 (T, ), L L L

e Compared to MC: MLMC reduces the variance of the deepest level using samples on
coarser (less expensive) levels.



Multilevel Monte Carlo with Numerical Smoothing
Estimator and Notation

@ Recall N
<At d = d
s Blg(X(M)] ~B[oX ()| = B[1(Y 1,2, 2 D) | = B[T(y 1,21, 7))
I(y.29,...2'D) = fG(yuy 122D () dyn
Yy +00
,[m Glyy1,27,... 2 )pl(y1)dy1+/* Gy, y-1.23, .2 D)1 (y1)dyn
By 1 i
N I(y 1,2 ). . ,ZE(])) = Z 7]kG(<k (EI) ,y,l,z(_l), e (_(1))
0
where 77 (y- 1,z(11>, . ,zE )) the approximated discontinuity location via root finding
1),0 1),
o Ip:= I(y*, z( ): .A.,z(fl) )

: level ¢ approximation of T in Q™™ computed with
step size Aty; ]VfLag,g Laguerre points; TOLNewton,¢ as the Newton tolerance at level £
°

I\ILMC Z Q
I3
{=Lo
with
M, M,
~ 1 L —~ 1 [ _
= I ; = I Iy 1tm) Lo+1<€<L
QLU MLO mgzl LQ,[mLO] QZ MZ mél( £,[myg] ¢ L[ml]) 0

(6)



MLMC with Numerical Smoothing: Analysis

Let g(x) = 1(4(x)20) Or 0 (¢(x) = 0)

Theorem 3.1 (Variance Decay (Bayer, Ben Hammouda, and Tempone 2022))

Under some reqularity assumptions for the drift and diffusion, using Euler—Maruyama,

Vy == Var [Tg - .74_1] =0 (At}), compared with O (At;ﬂ) for MLMC without smoothing.

-
/A General MLMC Complexity: O(TOLf%max(O’WT) log (TOL)2X1{’*:"})7

where «a: weak rate; 5: variance decay rate; v : work growth rate.

Corollary 3.2 (Complexity (Bayer, Ben Hammouda, and Tempone 2022))

Under some regularity assumptions for the drift and diffusion, the complexity of MLMC'
combined with numerical smoothing is O ( TOL’Q) up to log terms, compared with
(@] ( TOL’Q'B) for MLMC without smoothing.

A\ Milstein scheme: we show that we obtain the canonical complexity (O (TOL’Q)).
Corollary 3.3 (Robustness (Bayer, Ben Hammouda, and Tempone 2022))

Let ¢ be the kurtosis of the r.d.v To—Io_1, then under some regularity assumptions of the
drift & diffusion, we get k= O (1) compared to O (Atzl/Z) for MLMC' without smoothing.

v

/A The assumptions in Theorem 3.1 and Corollary 3.2 are sufficient but not necessary.



Sketch of the Proof of Theorem 3.1:
Goal and Notations

Goal: We want to show V; := Var [7@ - Tg_l] <E [(Tg —75_1)2] = O (Aty).
Notations

o X, X_1: the coupled paths of the approximate process X, simulated with time
step sizes Aty and Aty_q1, respectively.

o Wy and By: coupling Wiener and related Brownian bridge processes at levels £
and ¢ — 1, respectively.
e For t € [0,T], e(t;Y, By) is defined as

(Xy - Xo1)(t) = /Ot (@(Xo(s)) - a(Xr1(s))) ds + fot (B(Xo(5)) - B(Xr-1(5))) AWy ()

= [ @) -aXea () ds+ [ (EEs)) ~BKra(s) %ds

+f0t(5(fz(3))—E(Ye_l(s)))dBﬂ(s)
=t es(1Y, By),

where @(X (s)) = a(X (tn)), b(X(5)) = b(X(t,)), for t, < 5 < tn41, on the time
gridO:t0<t1<...<tN:T.



Sketch of the Proof of Theorem 3.1: Step 1

For Euler-Maruyama scheme and p > 1,

e Under global Lipschitzity of drift and diffusion coefficients
Assumption, we have (Kloeden and Platen 1992)

Ble"(1)] = 0(A%). (7)

e In (Bayer, Ben Hammouda, and Tempone 2022), assuming further
regularity assumptions of the drift and diffusion, we prove that

E[(9ye0)*(T)] = 0 (AL). (8)

/\ The proof is based on the Gronwall, Holder, Jensen and
Burkholder-Davis-Gundy inequalities.



Sketch of the Proof of Theorem 3.1: Step 2

Using (i) integration by parts, and (ii) the mean value, Fubini, and dominated convergence
theorems, we show that

AL(By) = (T~ Tp1)(By) = ]R (9(X (T3, Be)) - 9(X o1 (T5, Be))) pr () dy

= [ feotTiu B0, B) (0, (042050 B0) ) = 0,206 B) " )onw)iy | a0

[€2)

! 1
= [ [ dver (T B0 B 0,201, B)) pa )y o, 9

(€20)
with

Z(a;y7 BZ) = YZ*I(T; Y, B@) + eeé(T Y, Bé)v 0 e (07 1)
= (1-0)X,1(Tsy, Be) + 0X (T y, Be)



Sketch of the Proof of Theorem 3.1: Step 3

e For term (I), taking expectation w.r.t the Brownlan brldge and using
Holder’s inequality (p,q,p1,q1 € (1,+00), 1 + ~=1 and ot =1), result in
2 1/q1
[ (5[l 50 (@0 (@050 ¥ 50 1)
. 1/p
x (E |:H8g(T; . Bl’)Hi‘;};l(R)])

=0 (Aty). (10)

@ Choosing p and p; such that 2p L

2p; T\ 1/P1
(7 [HB“(T:"B’)”i?lm)])l/m _(E[(fua|€Z(T;y-,B/)|p1dy) ]) p
< (E[/R|€?(T¥y731)|p1dy])%

= O (Aty) (using Fubini’s theorem and (7)).

<1, and applying Jensen’s inequality:

o We show that

/a1
(E[Hg(z B/))( ((C) 2(- Bl))i) Y(dyz(,,B;) )Hqu [0,1 x]R)]) < 00,



Sketch of the Proof of Theorem 3.1: Step 4

e For the term (II) in (9), we redo same steps as for term (I)

2q1 ] 1/q1
51 ([0,1]xR) )
< (E[loyen(Ts- B o))"

= O (Aty) (11)

Elan?] < (B[|loe ) @250y

o Using (8), we show (EBZ [”a (T B (R)]) _ 0 (At).
o We show that

/q

(B[l B @ B2 ) <o



Error Discussion for MLMC

QMIMC. the MLMC estimator

E[g(X(T)] - @™ =E[g(X(T))] - E[¢(X"" ()]

Error I: bias or weak error of O(Aty,)

+B[1(vo,29, 29D)] - BT (Y29, 2Y)]

Error IT: numerical smoothing error of O(f\'TEZfL)+O(TOLNowmn.L)

+ E [TL (Y_l, z ., ZE‘?)] _ QMIMC

Error III: MLMC statistical error of O(\/Z/L:LO \/I\JLﬁg_yH()g(TOL;}ewwul))

Notations
@ yj: the approximated location of the non smoothness obtained by Newton
iteration = |y; — ¥ = TOLNewton
® My, is the number of points used by the Laguerre quadrature for the one

dimensional pre-integration step.
@ 5> 0: For the parts of the domain separated by the discontinuity location,
derivatives of G with respect to y; are bounded up to order s.



@ Numerical Experiments and Results



MLMC for Probability in the GBM model:
Euler-Maruyama
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Figure 4.1: MLMC for probability computation under the geometric Brownian
motion (GBM): Variance, cost, L!-distance and kurtosis per level. P: the
numerical approximation of the Qol at level £.



MLMC for Probability in the GBM Model: Milstein
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Figure 4.2: MLMC with Milstein scheme for probability computation under
the geometric Brownian motion (GBM): Variance, cost, L'-distance and
kurtosis per level. P;: the numerical approximation of the Qol at level /.



Probability Computation under the GBM Model:
Numerical Complexity Comparison

= o = MLMC without smoothing (Euler)
== TOL 23
= €)= MLMC without smoothing (Milstein)
= MLMC+ Numerical Smoothing (Euler)
TOL? log(TOL)?
P = @ = MLMC+ Numerical Smoothing (Milstein)
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Figure 4.3: Probability Computation under GBM: Comparison of the
numerical complexity of the different MLMC estimators.



MLMC for Probability under the Heston Model
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Figure 4.4: MLMC with FT Euler-Maruyama scheme for probability
computation under the Heston model: Variance, cost, L'-distance and
kurtosis per level. P;: the numerical approximation of the Qol at level /.



Density Estimation under the Heston Model
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Figure 4.5: Density of Heston: Convergence plots for MLMC with numerical
smoothing combined with the FT Euler scheme, for computing the asset price
density px(r) at u =1 and the joint density px (7). (1) at v =1 and v =0.04.



@ Conclusions and Extensions



o

2]

Conclusions

The numerical smoothing approach is adapted to the MLMC
context for efficient probability computation,
univariate/multivariate density estimation, and option pricing.
Compared to the case without smoothing
» We significantly reduce the kurtosis at the deep levels of MLMC
(becomes bounded instead of blow-up) which improves the
robustness of the estimator.

» We improve the MLMC strong convergence (variance decay) rate =
improvement of MLMC complexity from O (TOL72'5) to

@) (T OL_Q) (we recover the MLMC complexities obtained for

Lipschitz functionals).
When estimating densities: Compared to the smoothing strategies
based on MLMC with parametric regularization as in (Giles,
Nagapetyan, and Ritter 2015) or QMC with kernel density
techniques as in (Ben Abdellah et al. 2021), the error of our
approach does not increase exponentially with respect to the
dimension of state vector



Extensions

@ Extend our techniques to efficiently compute
> Sensitivities (Financial Greeks): 2 E[ f(w,a)].
» Risk quantities = nested expectations problems
Elg (E[f(X,Y)X])].
» Computing nonsmooth quantities (such as probabilities) of a
functional of a solution arising from a random PDE.
@ Combine the numerical smoothing technique with multilevel QMC
to profit from the good features of QMC and MLMC.

© Combine the numerical smoothing technique with antithetic
MLMC (Giles and Szpruch 2014) for multi-dimensional SDEs to
recover the optimal complexity.
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Assumptions about ¢(-)

aai(x) >0, Vx e R? (Monotonicity condition) (12)
5

zle o(x) = hm d)(:z:],x_j) = +00, ¥x_j e R or ﬁ(x) >0, Yx eRY,
(13)
(Growth condition).

(1) and (2) = the function ¢(x;,x_;) either has a simple root or is
positive for all z; e R

A\ Notation: x_; denotes the vector of length d — 1 denoting all the
variables other than x; in x.



How Does Regularity Affect MLMC Complexity?

o Complexity analysis for MLMC

MLMC Complexity (Cliffe et al. 2011) i) Weak rate:

727max(0 Lj) 2x1 |E [g (XZ(T)) -9 (X(T))“ < 0127(M
¢ (TOL "o /log (TOL) {j:ﬂ) ii) Variance decay rate:

(14) Var [g (Xe(T)) - g (Xe-1(T))] € e2277
=V

iii) Work growth rate: W, < 327 (W;:
expected cost)

o For Euler-Maruyama (y=1):
» If g is Lipschitz = V; ~ At, due to strong rate 1/2, that is =y and MLMC complexity
o (TOL_Z) (up to log terms);
» Otherwise (without any smoothing or adaptivity techniques):
[ <~ = worst-case complexity, O (TOL’% )
o Higher order schemes, E.g., the Milstein scheme, may lead to better complexities

even for non-Lipschitz observables (Giles, Debrabant, and Rofller 2013; Giles 2015).
However,

» For moderate/high-dimensional SDEs, the scheme becomes computationally expensive.
» Deterioration of the robustness of the MLMC estimator because the kurtosis explodes

as Aty decreases: O (At;l) compared with O (At;l/Q
smoothing (Giles, Nagapetyan, and Ritter 2015).

) for Euler-Maruyama without



How Does Regularity Affect MLMC Robustness?

e @ For non-lipschitz payoffs (without any smoothing or adaptivity

techniques):

4
% is of O(At;l/ 2) for Euler-Maruyama.
r[Yy,

o Large kurtosis problem: discussed previously in (Ben Hammouda, Moraes,
and Tempone 2017; Ben Hammouda, Ben Rached, and Tempone 2020) =
® Expensive cost for reliable/robust estimates of sample statistics.

The Kurtosis, xy :=

e Why is large kurtosis bad?
Var[Y;]
2 = s — 1 3 M, .
J82(Yy) \/m ("”f )+ ]\/f[—l’ N\ My > Ky

Why are accurate variance estimates, V; = Var[Yy], important?

L
M} o \JViW LS VW

=0

Notation

o Y= g(Xo(T)) - g(Xe-1(T))
® 0s2(y,): Standard deviation of the sample variance of Yy;
e M, : Optimal number of samples per level; Wy: Cost per sample path.



Extending Numerical Smoothing for
Multiple Discontinuities

o Multiple Discontinuities: Due to the payoff structure/use of Richardson extrapolation.
o R different ordered multiple roots, e.g., {y; }ﬁ 1, the smoothed integrand is

vy +oo
I(y-l-,zgl)y---,zg?)=f G(ylyy-uz(_ll),-~-7z(_‘?)p1(y1)dyl+ff G(yhy 1, ZSI),..~,Z(_L?)/11(y1)dy1
—o0 Vi
R-1 ~yf,
+wa G(yl,y_l,zg),-- (d))m(yl)dyh
i=1 JY;

and its approximation I is given by

_ Myag.1
Ty S s (e )y 9
k=0

My,
sy nﬁagG(CLag(yR) y,2, D)
k=0

R-1 [Myeg,i L ( ) @
Z ( Z "]kegG(C Eg(yf yz+1) Y-1,2_4 7~-<7Z,1) 5
i=1

{vr }ilzlz the approximated discontinuities locations; Mpag1 and Myag g: the number
of Laguerre quadrature points ¢ * Lag ¢ R with corresponding weights 78; { Mg, 1}?’11:
the number of Legendre quadmture points CLeg with corresponding weights 78
o I can be approximated further depending on (i) the decay of G x p; in the semi-infinite

domains and (ii) how close the roots are to each other.



Notations and Assumptions
Notation
o Xy(T)=Xo(T;(21,24)).
e We denote X,(T) by Y?Z.
° YkNZ are the Euler-Maruyama increments of 7% for 0<k <Ny
with X7' = X y'.
Assumption 5.1

For peN s.t. 1<p<4, there are positive rdvs Cp, with finite moments
of all orders such that

VN@GN, Vkl,...,kipe{o,...,Ng—l}: —N  —N
0X ), 0X),

Assumption 5.1 is fulfilled if the drift and diffusion coefficients are
smooth.



Notations and Assumptions

Assumption 5.2

For peN s.t. 1<p<4, there are positive rdvs D, with finite moments

of all orders such that ¢

— Ny -p
(aXT (Zf, _1)) <Cy a.s.

0y

Y=z

e In (Bayer, Ben Hammouda, and Tempone 2023), we show
sufficient conditions where this assumption is valid.
e For instance, Assumption 5.2 is valid for

» one-dimensional SDEs with a linear or constant diffusion.

» multivariate SDEs with a linear drift and constant diffusion,
including the multivariate lognormal model (see (Bayer,
Siebenmorgen, and Tempone 2018)).



Errors in the Numerical Smoothing
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Figure 5.1: Call option under GBM with N =4: The relative numerical
smoothing error for a fixed number of ASGQ points Masaq = 10° plotted
against (a) different values of M, with a fixed Newton tolerance
TOLNewton = 10710, (b) different values of TOLNewton With a fixed number of
Laguerre quadrature points My e = 128.
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