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Bayesian setting

Bayesian decision theory relies on computing expectations:

π(f ) =

∫
Rd

f (x)dπ(x) =

∫
Rd

f (x)π(x)dx

Generic problem: estimation of an integral π(f ), where

- π is known up to a multiplicative factor ;
- Sampling directly from π is not an option;

A solution is to approximate π(f ) by n−1
∑n

i=1 f (Xi ) where (Xi )i≥0 is a
Markov chain associated with a Markov kernel P with invariant distribution π.

We assume that π is positive on Rd ,

π : x 7→ e−U(x)

/∫
Rd

e−U(y)dy ,

U is referred to as the potential associated with π.
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(Overdamped) Langevin diffusion

Langevin SDE:
dYt = −∇U(Yt)dt +

√
2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Notation: (Pt)t≥0 the Markov semigroup associated to the Langevin
diffusion:

Pt(x ,A) = P(Yt ∈ A|Y0 = x) , x ∈ Rd ,A ∈ B(Rd) .

π(x) ∝ exp(−U(x)) is the unique invariant probability measure.
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM) scheme:

Xk+1 = Xk − γ∇U(Xk) +
√

2γGk+1

where

- (Gk)k≥1 is i.i.d. N (0, Id)
- γ > 0 is a stepsize

This algorithm is referred to as the Unadjusted Langevin Algorithm (ULA) in
Bayesian statistics or Langevin Monte Carlo (LMC).

U is not necessarily convex here but still gradient Lipschitz.

Langevin MC and applications 6 / 69



7/69

Discretized Langevin diffusion: constant stepsize

(Xk)k≥1 is an homogeneous Markov chain with Markov kernel Rγ

Under mild conditions, Rγ ⇝ unique invariant distribution πγ

πγ which does not coincide with the target distribution π

Questions:

For a given precision ϵ > 0, how should I choose the stepsize γ > 0 and
the number of iterations n so that : d(δxR

n
γ , π) ≤ ϵ where d is some

distance [could be the TV or the Wasserstein distance]
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Wasserstein metrics and total variation

The set of all couplings of ξ and ξ′ is denoted by Π(ξ, ξ′). ζ ∈ Π(ξ, ξ′) if :

ζ(A× Rd) = ξ(A) and ζ(Rd × A) = ξ′(A) for all A ∈ B(Rd) .

Let ξ, ξ′ be two probability measures on (Rd ,B(Rd)). Define the Wasserstein
or Kantorovich-Rubinstein distance of order p by

Wp
p(ξ, ξ

′) = inf
ζ∈Π(ξ,ξ′)

∫
Rd×Rd

∥x − x ′∥p ζ(dxdx ′) .

Let ξ, ξ′ be two probability measures on (Rd ,B(Rd)). Define the total
variation distance by

∥ξ−ξ′∥TV = inf
ζ∈Π(ξ,ξ′)

∫
Rd×Rd

1∆∁
Rd
(x , x ′)ζ(dxdx ′) , ∆Rd = {(x , x) : x ∈ Rd} .

Langevin MC and applications 8 / 69



9/69

(Very incomplete) existing results for ULA

1. Weak errors estimates [TT90; LP03].

2. Explicit errors [Dal14; DM17].

3. These results are based on

the comparison between the discretization and the diffusion process
quantify how the error introduced by the discretization accumulate
throughout the algorithm.

4. In the following, we consider a different approach.
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Reminder: fixed step size ULA

Consider (Xk)k∈N a Markov chain associated with the Euler scheme

Xk+1 = Xk − γ∇U(Xk) +
√
2γGk+1 , (1)

to sample from π ∝ e−U .

Recall that Rγ is the Markov kernel associated with (1).

We assume in the sequel that for any γ > 0, Rγ has an invariant probability
distribution πγ ̸= π.

Let f : Rd → R be a test function for which we want to compute π(f ) and
consider the estimator:

π̂n(f ) = n−1
n∑

k=1

f (Xk) .
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Bias-Variance decomposition

Consider the Mean Square error for π̂n(f ):

E
[
|π̂n(f )− π(f )|2

]
= bias2n,γ(f ) + Var

{
n−1

n∑
k=1

f (Xk)

}
,

biasn,γ(f ) =

∣∣∣∣∣n−1
n∑

k=1

{E [f (Xk)]− π(f )}

∣∣∣∣∣ =
∣∣∣∣∣n−1

n∑
k=1

{µ0R
k
γ f − π(f )}

∣∣∣∣∣ .
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Bound for the bias

The presented works and many papers on ULA/discretization establish that
for some numerical sequence (un)n∈N∗ :

Wc(µ0R
n
γ , π) ≤ un(µ0, π, γ) , for some assumptions on U ,

where for c : Rd × Rd → [0,+∞), the Wasserstein metric/distance
Wc(µ, ν) between µ and ν by

Wc(µ, ν) = inf
ζ∈Π(µ,ν)

∫
Rd×Rd

c(x , y)dζ(x , y) . (2)

Implies that biasn,γ(f ) can be estimated if f ∈ F .
F a class of function related to c.

Examples:

1. Wc = W1, c(x , y) = ∥x − y∥ and F = {f Lipschitz} ;
2. Wc = ∥ · ∥TV, c(x , y) = 1x ̸=y and F = {f bounded}.
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Bound on the variance term

Consider the Mean Square error for π̂n(f ):

E
[
|π̂n(f )− π(f )|2

]
= bias2n,γ(f ) + Var

{
n−1

n∑
k=1

f (Xk)

}
.

Question: what about the variance term? Can we have also explicit bound on
this term?

Natural answer: we need to have quantitative bound for the convergence of
Rγ to πγ .

The same problem appears when dealing with concentration inequalities:

P (|π̂n(f )− π(f )| ≥ t) ≤?? , t ≥ 0 .
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Going back to the bias

Recall

biasn,γ(f ) =

∣∣∣∣∣n−1
n∑

k=1

{E [f (Xk)]− π(f )}

∣∣∣∣∣ =
∣∣∣∣∣n−1

n∑
k=1

{µ0R
k
γ f − π(f )}

∣∣∣∣∣ .
If we can show and quantify convergence of (Xk)k∈N to πγ , we can think
about considering the decomposition

biasn,γ(f ) ≤ |π(f )− πγ(f )|+

∣∣∣∣∣n−1
n∑

k=1

{E [f (Xk)]− πγ(f )}

∣∣∣∣∣
= |π(f )− πγ(f )|+

∣∣∣∣∣n−1
n∑

k=1

{µ0R
k
γ f − πγ(f )}

∣∣∣∣∣ .
It remains to bound |π(f )− πγ(f )|: see Andreas’ talk!
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Convergence of Markov processes

The study of the convergence of Markov processes is an active field.

Pioneering results from [NT78; NT82; NT83].

[Pop77; MT92] established (f , r)-ergodicity on general state space using
Foster-Lyapunov drift conditions in combination of an appropriate
minorization condition.

Applied in numerous papers [Cha93; CT91; RP94].

Later extended to continuous-time Markov processes in [Kha11; MT93]....
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Convergence of Markov processes (II)

Most of these results in total variation or in V-norm and are non-quantitative.

Let ξ, ξ′ be two probability measures on (Rd ,B(Rd)). Define the V -norm for
V : Rd → [1,+∞) by

∥ξ − ξ′∥V = sup
|f |≤V

∣∣∣∣∫
Rd

f (x)d{ξ − ξ′}(x)
∣∣∣∣ .

Explicit convergence bounds in the same metrics for Markov chains have
been established in [Ros95; For01; DMR04; Ros02]...

The techniques developed in these papers have not been adapted to
continuous-time Markov processes, except in [RR96].

Deriving quantitative minorization conditions for continuous-time process
seems to be even more difficult than for their discrete counterpart.
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Wasserstein vs total variation distance

To avoid the use of minorization conditions, Wasserstein metrics have shown
to be very interesting.

Following [HM11], [HMS11] generalizes the Harris’ theorem for V -norms to
handle more general Wasserstein type metrics.

Use of Wasserstein distance has been successively applied to the study of
diffusion processes and MCMC algorithms [Ebe16; Cha+18; Bak+; HSV14].

One key idea introduced in [HMS11] and [Ebe16] is the construction of an
appropriate metric designed specifically for the Markov process under
consideration.

We can still wonder if “good minorization conditions” can be found to derive
similar bounds using classical results cited above.

In particular for Rγ , γ > 0 under some conditions on U.
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Preliminary observations

For any γ > 0 and n ∈ N, Rn
γ is supposed to be an approximation of Pnγ .

Recall that (Pt)t≥0 is the Markov semigroup associated with

dYt = −∇U(Yt)dt +
√
2dBt .

So, the convergence of Rγ to πγ should be ≈ the one of (Pt)t≥0 to π.

Using different techniques, it can be shown that for some semi-metric dist

dist(µ0Pt , π) ≤ C (µ0)ρ
t , C ≥ 0 , ρ ∈ (0, 1) .

Therefore, it is expected that roughly

dist(µ0R
n
γ , πγ) ≤ C (µ0)ρ

nγ .

The rate of convergence should scale linearly with γ!
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Strongly convex potential: Convergence in W2

Assume that U is m-strongly convex and L-gradient Lipschitz.

By an easy computation, using the synchronuous coupling,

W2
2(µ0Pnγ , π) ≤ C2,c(µ0)ρ

γn
2,c , ρ2,c = e−m ,

W2
2(µ0R

n
γ , πγ) ≤ C2,d(µ0)ρ

γn
2,d , ρ2,d = e−ϖ , ϖ = 2mL/(m + L) .
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Strongly convex potential: Convergence in total variation

Assume that U is m-strongly convex and L-gradient Lipschitz.

For the total variation distance, using the reflexion coupling, we obtain the
following result.

Theorem 1 (DM19)

For any γ > 0 and n ∈ N∗, n ≥ 2/γ,

∥µ0Pnγ − π∥TV ≤ CTV,c(µ0)ρ
γn
TV,c , ρTV,c = e−m .

For any γ ∈ (0, 2/(m + L)), and n ∈ N∗, n ≥ 2/γ,

∥µ0R
n
γ − πγ∥TV ≤ CTV,d(µ0)ρ

γn
TV,d , ρTV,d = e−ϖ .

We get the same convergence rate for the total variation distance and the
Wasserstein distance!
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Functional auto-regressive models

In [DD19], we study the convergence in ∥ · ∥TV of a class of Markov chains.

For any γ > 0, Rγ belongs to this class.

We study Markov chains (Xk)k∈N on Rd defined by the recursion:

Xk+1 = Tγ(Xk) +
√
2γGk+1 ,

where

(Gk)k∈N∗ is a sequence of i.i.d. Gaussian random variable with zero
mean and covariance identity.
{Tγ : γ ∈ (0, γ̄]} is a sequence of functions from Rd to Rd .

For the Euler-Maruyama discretization, Tγ ← {x 7→ x − γ∇U(x)}.
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Assumption on functional auto-regressive models

Consider the assumption: for any γ ∈ (0, γ̄] and x , y ∈ Rd ,

∥Tγ(x)− Tγ(y)∥2 ≤ (1 + γκ(γ)) ∥x − y∥2 .

For the EM discretization corresponds to a one-side Lipschitz condition on
∇U: there exists κ ∈ R, for any x , y ∈ Rd ,

⟨∇U(x)−∇U(y), x − y⟩ ≥ κ ∥x − y∥ .

Indeed, it implies that

∥Tγ(x)− Tγ(y)∥2 ≤ (1 + γκ(γ)) ∥x − y∥2 , with κ(γ) = −2κ+ L2γ .

κ measures in some sense the default of convexity of U:

if κ > 0, for γ small enough, 1 + γκ(γ) ≤ 1;
if κ < 0, for any γ > 0, 1 + γκ(γ) > 1.
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Minorization conditions for functional auto-regressive
models

Consider the assumption: for any γ ∈ (0, γ̄] and x , y ∈ Rd ,

∥Tγ(x)− Tγ(y)∥2 ≤ (1 + γκ(γ)) ∥x − y∥2 .

Then explicit minorization conditions [DD19] can be found for (Xk)k∈N

Xk+1 = Tγ(Xk) +
√
γGk+1 .

The constants which appear do not depend on the dimension and are sharp!

It remains to apply results developed in the litterature to obtain quantitative
bounds for (Xk)k∈N if a Lyapunov condition holds!

Or for some cases not...
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Lyapunov conditions for functional auto-regressive models

Denote by Qγ the Markov kernel associated with (Xk)k∈N:

Xk+1 = Tγ(Xk) +
√
γGk+1 .

Assume that Qγ satisfies a Foster-Lyapunov condition for any γ ∈ (0, γ̄] and
x ∈ Rd :

QγV (x) ≤ λγV (x)+bγ1D(x) , with D ⊂ Rd , λγ ∈ (0, 1) and bγ ≥ 0 . (3)

It turns out that it is a really bad idea to apply as such existing results
directly to Qγ .

We need to consider instead Q
⌈1/γ⌉
γ .

Therefore, we need to consider a Lyapunov-drift condition for this Markov
kernel!
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Lyapunov conditions for functional auto-regressive models

Assume that Qγ satisfies a Foster-Lyapunov condition for any γ ∈ (0, γ̄] and
x ∈ Rd :

QγV (x) ≤ λγV (x)+bγ1D(x) , with D ⊂ Rd , λγ ∈ (0, 1) and bγ ≥ 0 . (4)

If we iterate Equation (4), we end up with

Q⌈1/γ⌉
γ V (x) ≤ λ̃V (x) + b̃ , with λ̃ ∈ (0, 1) and b̃ ≥ 0 .

But we do not have the indicator function anymore which lead to non-sharp
results.

We adapt proofs of the results in [Ros92,DM17] to get sharp convergence
bounds for Qγ .
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Application to potential strongly convex outside a ball

H1

U is L-gradient Lipschitz.

There exists m ∈ R∗
− such that for any x , y ∈ Rd ,

⟨∇U(x)−∇U(y), x − y⟩ ≥ m ∥x − y∥2 . (5)

There exist m+ > 0 and R ≥ 0 such that for any x , y ∈ Rd , ∥x − y∥ ≥ R,

⟨∇U(x)−∇U(y), x − y⟩ ≥ m+ ∥x − y∥2 . (6)
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Convergence of the Euler discretization

Theorem 2

Assume H1. Then there exist γ̄ > 0, Dγ̄,1,Dγ̄,2,Eγ̄ ≥ 0 and λγ̄ , ργ̄ ∈ [0, 1) with
λγ̄ ≤ ργ̄ , which can be explicitly computed, such that for any γ ∈ (0, γ̄],
x , y ∈ Rd and k ∈ N

Wc(δxR
k
γ , δyR

k
γ) ≤ λ

kγ/4
γ̄ [Dγ̄,1c(x , y) + Dγ̄,21x ̸=y ] + Eγ̄ρ

kγ/4
γ̄ 1x ̸=y , (7)

where c(x , y) = 1x ̸=y (1 + ∥x − y∥ /R).

It is sensible to obtain two different convergence rates λγ̄ , ργ̄ in Theorem 2.

One characterizing the forgetting of the initial distance between the two
starting points x , y ∈ Rd , corresponding to a burn-in period.

The other one characterizing the effective convergence.

Note that λγ̄ ≪ ργ̄ .

Langevin MC and applications 28 / 69



29/69

Convergence of the Euler discretization (II)

Corollary 3

Assume H1 Then, there exist γ̄ > 0, Eγ̄,1,Eγ̄,2 ≥ 0 such that for any γ ∈ (0, γ̄],
x , y ∈ Rd and k ∈ N we have

∥δxRk
γ − δyR

k
γ∥TV ≤Wc(δxR

k
γ , δyR

k
γ) ≤ Eγ̄,1ρ

kγ/4
γ̄ c(x , y) , (8)

W1(δxR
k
γ , δyR

k
γ) ≤ Eγ̄,2ρ

kγ/4
γ̄ ∥x − y∥ , (9)

In addition, the constants, {Eγ̄,i : i = 1, 2, 3} can be explicitly computed.

This result and the first one imply quantitative convergence for variance of
additive functional and concentration inequality.

No need of strict contraction!

Bounds also for Wp(δxR
k
γ , δyR

k
γ).
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Convergence of the diffusion

Theorem 4

Assume H1. Then there exist D1,D2,E ≥ 0 and λ, ρ ∈ [0, 1) with λ ≤ ρ such
that for any x , y ∈ Rd and t ≥ 0

∥δxPt − δyPt∥TV ≤Wc(δxPt , δyPt) ≤ λt/4[D1c(x , y) + D21x ̸=y ] + Eρt/41x ̸=y ,
(10)

where c(x , y) = 1x ̸=y (1 + ∥x − y∥ /R), (Pt)t≥0 is the Markov semigroup
associated with the Langevin semigroup and{

D1 = limγ̄→0 Dγ̄,1 , D2 = limγ̄→0 Dγ̄,2 , E = limγ̄→0 Eγ̄ ,

λ = limγ̄→0 λγ̄ , ρ = limγ̄→0 ργ̄ ,
(11)

and Dγ̄,1,Dγ̄,2,Eγ̄ , λγ̄ , ργ̄ are given in Theorem 2.

Note that the constants D1,D2,E , λ and ρ have explicit expressions.
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Comparison with existing results

First, a major difference between our work and other ones on the same
subject is that we use a completely different technique to establish our results.

They show in general a strict contraction for Wc for well-chosen c.

Therefore they do not dissociate the forgotten of initial conditions and the
effective convergence rate.

The convergence rate obtained in [EM18] [MMS18] are smaller than ours
regarding the discretization.

The convergence in the total variation we derive is new using a probabilistic
strategy and improve [EGZ18] (dependence on the dimension).
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The Metropolis Adjsuted Langevin Algorithm

To circumvent the bias of ULA, [RT96b; RDF78; Nea93] suggest to use a
Metropolis filter.

This defines the Markov chain

Xk+1 = Yk+11 {α(Xk ,Yk+1) ≤ Uk+1}+ Xk1 {α(Xk ,Yk+1) > Uk+1} , (12)

where

Yk+1 = Xk − γ∇U(Xk) +
√

2γGk+1 (13)

α(x , y) = 1 ∧
{
π(y)rγ(y , x)

π(x)rγ(x , y)

}
. (14)

Denote by Rγ the Markov kernel associated with MALA.
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Convergence of MALA

What about convergence of MALA?

Under very mild assumption on U:

lim
k→+∞

∥δx R̄γ − π∥TV = 0 , for any x ∈ Rd . (15)

Question: can we quantify the convergence?

Here we are particularly interested in geometric ergodicity.
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Conditions on U

H2

U is L-gradient Lipschitz.

U = U1 + U2 with U2,∇U2 bounded and

∇2U1(x) ⪰ m Id , for any x ∈ Rd , ∥x∥ ≥ R . (16)

Condition (16) is stronger than condition H1–(6).
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A first result

Theorem 5 ([DM23])

Assume H2. Then, there exists γ̄ > 0 such that for any γ ∈ (0, γ̄], there exist
Cγ ≥ 0, ργ ∈ [0, 1) satisfying for any x , k

∥δx R̄k
γ − π∥V ≤ Cγρ

k
γV (x) , (17)

where
V (x) = exp(m ∥x∥2 /16) . (18)

Cγ ≥ 0, ργ ∈ [0, 1) are non-quantitative.

In particular, the dependence with respect to γ is unclear.
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A quantitative result

H3

Assume that supx
∥∥D3U(x)

∥∥ ≤ M < +∞.

Theorem 6 ([DM23])

Assume H2 and H3. Then, there exists γ̄ > 0, Cγ̄ ≥ 0, ργ̄ ∈ [0, 1) such that for
any γ ∈ (0, γ̄], x , k

∥δx R̄k
γ − π∥V ≤ Cγ̄ρ

kγ
γ̄ V (x) , (19)

where V (x) = exp(m ∥x∥2 /16).

Cγ̄ ≥ 0, ργ̄ ∈ [0, 1) are quantitative.

We get back the linear dependence of the convergence rate with respect to γ:

log(ργγ̄) = γ log(ργ̄) . (20)
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Comparison with existing results I/III

V -geometric ergodicity has been shown for MALA in [RT96a] under strong
condition on U.

H4

Assume

lim
∥x∥→+∞

∫
1A(x)∩I (x)(y)rγ(x , y)dy = 0 , (21)

where
A(x) = {y : α(x , y) = 1} , I (x) = B(0, ∥x∥) . (22)

lim inf
∥x∥→+∞

{∥x∥ − ∥x − γ∇U(x)∥} ≥ η . (23)

Condition very hard to verify!

The Lyapunov function that [RT96a] depends on γ: V (x) = exp(a ∥x∥),
a ≤ γη.
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Comparison with existing results II/III

Analysis of MALA using conductance techniques [Dwi+18; Che+21]

Assume U is strongly convex

Require a proper initialization
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Comparison with existing results III/III

H5

Assume that U is C4 and

∇2U(x) ⪰ m Id , for ∥x∥ ≥ R . (24)

Theorem 7 (bourabee:hairer:2013)

Assume H5, then there exists γ̄ > 0, Cγ̄ ≥ 0, ργ̄ ∈ [0, 1) such that for any
γ ∈ (0, γ̄], ∥x∥ ≤ E0, k

∥δx R̄k
γ − π∥TV ≤ Cγ̄(E0)(ρ

kγ
γ̄ V (x) + ϕ(γ)) . (25)
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Stochastic optimization setting

Let Θ be a convex closed set in RdΘ .

Consider an objective function f : Θ→ R which we want to minimize.

Its gradient is given for any θ ∈ Θ by

∇f (θ) =
∫
Rd

Hθ(x)πθ(dx) ,

where

(θ, x) 7→ Hθ(x) ∈ C(Θ× Rd ,R);
(πθ)θ∈Θ family of probability distributions over (Rd ,B(Rd)).
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Stochastic approximation (II)

Consider an objective function f : Θ→ R which we want to minimize

Its gradient is given for any θ ∈ Θ by

∇f (θ) =
∫
Rd

Hθ(x)πθ(dx) .

To optimize f , consider the classical stochastic recursion [RM51]: starting
from θ0 ∈ Θ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(Y
n
k )

]
, (26)

where

(δn)n∈N∗ ∈ (R∗
+)

N∗
, (mn)n∈N ∈ (N∗)N: stepsizes and batch sizes;

ΠΘ orthogonal projection onto Θ;
for any n ∈ N, (Y n

k )k∈{1,...,mn} i.i.d. ∼ πθn .

Langevin MC and applications 44 / 69



45/69

Stochastic approximation (III)

Then, a sequence of approximate minimizers of f : (θ̂N)N∈N∗ where for
any N ∈ N∗

θ̂N =

{
N∑

n=1

δnθn

}/{
N∑

n=1

δn

}
.

Langevin MC and applications 45 / 69



46/69

An illustrative example: empirical Bayes estimation

Consider the hierarchical model based on the observation y :

(y , x , θ) 7→ p(y |x , θ)
prior distributions (x , θ) 7→ p(x |θ) and θ 7→ p(θ) ,

x ∈ Rd is the parameter of interest;
θ ∈ Θ ⊂ RdΘ is a hyperparameter.

The the a posteriori distribution is given for any x ∈ Rd by

p(x |y) ∝
∫
Θ

p(y |x , θ)p(x |θ)p(θ)dθ .

Question: how to sample from p(x |y)?
One solution consists in sampling from p(θ|x , y) and p(x |y , θ) alternatively
and performing inference using the marginal distribution along the variable x .
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An illustrative example, the EB setting (II)

The a posteriori distribution is given for any x ∈ Rd by

p(x |y) ∝
∫
Θ

p(y |x , θ)p(x |θ)p(θ)dθ .

Another solution consists in approximating the a posteriori distribution of x
given y by

p(y |x , θ∗)p(x |θ∗)p(θ∗) up to a normalizing constant

with θ∗ ∈ argmax p(θ|y)

p(θ|y) ∝
∫
Rd

p(y |θ, x)p(x |θ)p(θ)
p(y)

dx =

∫
Rd

p(x , y , θ)

p(y)
dx .

It defines the empirical Bayes setting [CL00; Cas85; Rob85].

Now how to estimate θ∗?
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An illustrative example, the EB setting (III)

θ∗ ∈ argmax p(θ|y) , p(θ|y) ∝
∫
Rd

p(y |θ, x)p(x |θ)p(θ)dx =

∫
Rd

p(x , y , θ)dx .

Now how to estimate θ∗?

Solution: using stochastic approximation approach with

Hθ(x) = ∇θp(x , y , θ)/p(x , y , θ) , πθ(x) = p(x |θ, y) = p(y |x , θ)p(x |θ)
p(y |θ)

.

Indeed, using that p(y |x,θ)p(x|θ)
p(y |θ) = p(x,y ,θ)

p(θ|y) , we get

∇θ log p(θ|y) =
∫
Rd

∇θp(x , y , θ)

p(θ|y)
dx =

∫
∇θp(x , y , θ)

p(x , y , θ)
πθ(x)dx .

However, in some case sampling from πθ is not an option!

Other applications where it is not possible: maximum marginal likelihood
estimation, texture synthesis...
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Stochastic optimization using MCMC

Question: how to use stochastic approximation as sampling from πθ is not an
option.

One solution: use MCMC methods.

Specifically, the SA recursion is replaced by: starting from θ0 ∈ Θ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(Y
n
k )

]
, (27)

where

(δn)n∈N∗ ∈ (R∗
+)

N∗
, (mn)n∈N ∈ (N∗)N: stepsizes and batch sizes;

ΠΘ orthogonal projection onto Θ;
for any n ∈ N, (Y n

k )k∈{1,...,mn} is a Markov chain with invariant
distribution πθn .

SA (with and without MCMC) was studied in numerous papers [BMP90;
FM03; DHS11; AM06; Nem+08; AFM17]

Question: can we use inexact MCMC methods as ULA instead of exact
MCMC methods?
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Stochastic optimization using inexact MCMC

More precisely, consider a family of Markov kernels

{Kγ,θ, γ ∈ (0, γ̄) and θ ∈ Θ} .

Assume that for any θ ∈ Θ and γ ∈ (0, γ̄), Kγ,θ admits an invariant
probability distribution πγ,θ.
Assume in addition that: the bias associated to the use of this family of
Markov kernels can be controlled w.r.t. to γ uniformly in θ, i.e.there exists
C > 0 such that for all γ ∈ (0, γ̄) and θ ∈ Θ,

|πγ,θ(Hθ)− πθ(Hθ)| ≤ Cγτ , for τ > 0 .

It seems reasonable to use the recursion: starting from θ0 ∈ Θ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(X
n
k )

]
, (28)

where
for any n ∈ N, (X n

k )k∈{1,...,mn} is a Markov chain with Markov kernel
Kγn,θn , where (γn)n∈N is a sequence of step-size.
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Stochastic approximation using inexact MCMC (II)

starting from θ0 ∈ Θ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(X
n
k )

]
, (29)

where

for any n ∈ N, (X n
k )k∈{1,...,mn} is a Markov chain with Markov kernel

Kγn,θn , where (γn)n∈N is a sequence of step-size.

In our applications,

for any θ ∈ Θ,
πθ(x) ∝ exp (−Uθ(x)) ;

Kγ,θ stands for Rγ,θ for any γ ∈ (0, γ̄), θ ∈ Θ where Rγ,θ is associated
with

X θ
k+1 = X θ

k −∇Uθ(X
θ
k ) +

√
2γGk+1 .
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Stochastic approximation using inexact MCMC (III)

starting from θ0 ∈ Θ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(X
n
k )

]
, (30)

where

for any n ∈ N, (X n
k )k∈{1,...,mn} is a Markov chain with Markov kernel

Kγn,θn , where (γn)n∈N is a sequence of step-size.

Question: convergence to minimizers/minimum of f of
(θ̂N)N∈N∗/(f (θ̂N))N∈N∗ where for any N ∈ N∗

θ̂N =

{
N∑

n=1

δnθn

}/{
N∑

n=1

δn

}
?
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Assumptions on Θ and f

H6

Θ is a convex compact set and Θ ⊂ B(0,MΘ) with MΘ > 0.

H7

There exist an open set U ⊂ Rm and Lf ≥ 0 such that Θ ⊂ U and f ∈ C1(U,R) is
convex and for any θ1, θ2 ∈ Θ

∥∇f (θ1)−∇f (θ2)∥ ≤ Lf ∥θ1 − θ2∥ . (31)
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Main results increasing batch size

Theorem 8 (DDPV 19)

Assume H6, H7 and some conditions on {Kγ,θ : γ ∈ (0, γ̄] , θ ∈ Θ}. Let (γn)n∈N,
(δn)n∈N∗ be sequences of non-increasing positive real numbers and (mn)n∈N be a
sequence of positive integers satisfying supn∈N δn < 1/Lf , supn∈N γn < γ̄ and

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1γ
τ
n < +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞ .

Then, (θ̂n)n∈N converges a.s to some θ∗ ∈ argminΘ f .
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Fixed batch size setting

The conditions:

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞

implies that mn → +∞ as n→ +∞.

We also have the same kind of convergence results in the setting where
mn = m ∈ N∗ for any n ∈ N∗ but requires additional conditions which are
satisfied for ULA.
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Assumptions on {Rγ,θ : γ ∈ (0, γ̄] , θ ∈ Θ}

The condition on {Rγ,θ : γ ∈ (0, γ̄] , θ ∈ Θ} is satisfied under the following
assumption on (πθ)θ∈Θ.

H8

For any θ ∈ Θ, there exists Uθ : Rd → R such that πθ(x) ∝ exp(−Uθ(x)). In
addition (θ, x) 7→ Uθ(x) is continuous, x 7→ Uθ(x) is differentiable for all θ ∈ Θ
and there exists L ≥ 0 such that for any x , y ∈ Rd ,

sup
θ∈Θ
∥∇xUθ(x)−∇xUθ(y)∥ ≤ L ∥x − y∥ ,

and {∥∇xUθ(0)∥ : θ ∈ Θ} is bounded.

H9

There exist η > 0 and m1,C ,Mη ≥ 0 such that for any θ ∈ Θ and x ∈ Rd ,

⟨∇xUθ(x), x⟩ ≥ η∥x∥1B(0,Mη)c(x) + m1∥∇xUθ(x)∥2 − C .
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Numerical experiments: Statistical audio compression

Consider an n-dimensional time-discrete signal z ∈ Rn.

Assume it is sparse in some dictionary Ψ ∈ Rn×j , i.e, z = Ψx with x ∈ Rj is
sparse.

We assume that the observation y is a noisy compressed version of z:

y = Mz+w ,

where w is Gaussian and M ∈ Rp×n with p < n is a measurement matrix.

We consider the prior

p(x|θ) ∝ exp

(
−θ

d∑
i=1

hλ(xi )

)
,

where hλ is the Huber function given for any u ∈ R by

hλ(u) =

{
u2/2 if |u| ≤ λ ,

λ(|u| − λ/2) otherwise .
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Numerical experiments: Statistical audio compression (II)

The a posteriori distribution is then given by:

p(x|y, θ) ∝ exp

(
−
∥y −MΨx∥22

2σ2
− θ

d∑
i=1

hλ(xi )

)
.

z is retrieved here by computing the maximum-a-posteriori (MAP) estimate
x̂MAP that maximises p(x|y) and then setting ẑMAP = Ψx̂MAP :

x̂MAP(θ) ∈ argmin
x∈Rn

{
∥y −MΨx∥22 /(2σ

2) + θ

d∑
i=1

hλ(xi )

}
,

The problem we face is to select the value of the hyper-parameter θ > 0.
Here we consider the maximum marginal likelihood estimator

θ̂MMLE(θ) = argmax
θ∈Θ

p(y|θ) , Θ =
[
0.4444, 2.22× 103

)
,

computed using the SA approach below, since

p(y|θ) =
∫
Rn

p(x, y|θ) dx .

Langevin MC and applications 60 / 69



61/69

Numerical experiments: Statistical audio compression (III)

We consider the audio compression experiment proposed in [BNE10] for the
“Mary had a little lamb” song.

The unknown parameter vector x is assumed to have dimension d = 2900.

Ψ has row vectors which correspond to different piano notes.

In the experiment proposed in [BNE10], θ is set to

θcs = 0.1 ·max(|(MΨ)⊺y |)/σ2

.

We use θcs as the initial value for θ
in our algorithm.

We use a fixed step size γ, mini-
batch mn = 1, and a decreasing
sequence (δn)n∈N ∝ n−0.8.

0 50 100 150 200
Iteration (t)

10 -1

10 0

10 1

10 2

10 3

10 4
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Numerical experiments: Statistical audio compression (IV)

We compare the reconstruction for the MAP corresponding to our
approximation of θ̂MMLE and θcs.

We consider the reconstruction mean squared error (MSE) ∥z− Ψx̂MAP∥2.
θMMLA is close to the optimal value.

Figure: Statistical audio compression MSE for different values of the θ
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[AFM17] Y. F. Atchadé, G. Fort, and E. Moulines. “On perturbed proximal gradient
algorithms”. In: J. Mach. Learn. Res 18.1 (2017), pp. 310–342.
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