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Introduction

Given

@ a smooth potential function V : R” — R and its gradient VV : R" — R", which can
be evaluated at any point in R" at a cost, and

@ an everywhere differentiable observable function L?(e™") > f : R” — R,

approximate the integral
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Given

@ a smooth potential function V : R” — R and its gradient VV : R" — R", which can
be evaluated at any point in R" at a cost, and

@ an everywhere differentiable observable function L?(e™") > f : R” — R,

0= [ (1)

MCMC Solution (for large n): Use stochastic dynamics, e.g. (discretizations of)

approximate the integral

overdamped Langevin: dg: = =V V/(q:)dt + V2dW,
or (underdamped) Langevin: dg: = p:dt,

dpe = =V V(q:)dt — [prdt + V2T dW;

for any positive symmetric definite I € R"™*" and set nr(f) := ¢ fo (ge)dt.
Overdamped Langevin dynamics has the invariant measure 7(dq) e_v(q dq and

underdamped Langevin has the invariant measure #(dqdp) oc e~V(9)~ T dqdp
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Underdamped Langevin dg; = p;dt, dp: = —V V(q:)dt — ['pedt + /2T dW;

In order to obtain some measure of ‘speed’ at which
mr(f) =7 fo

T (F(a)

(ge)dt = [o, f(%eva) = 7r(f) occurs as T — oo, use the fact that
en

— 7(f))dt — N(0,0?) in distribution as T — oo for some o2 > 0:
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Underdamped Langevin dg; = p;dt, dp: = —V V(q:)dt — ['pedt + /2T dW;

In order to obtain some measure of ‘speed’ at which

nr(f) = ¢ fo (ge)dt = [o, f<%) = 7r(f) occurs as T — oo, use the fact that
n
F fo (f(qe) — 7(f))dt — N(0,0?) in distribution as T — oo for some ¢ > 0:
Claim: 0° =2 [, V,¢' TV,¢d#, where ¢ solves
—Ld = (—p Vo +VV(q) Vo +Tp' V, =V, TV,)$ = f —7(f).

‘Proof’: Suppose there exists a well-behaved solution ¢ : R*” — R and use 1t8’s lemma
to obtain

¢(qfapt):¢(q07p0)+/o £¢(qs,Ps)dS+A Vp¢(Qs,Ps)T\/des

= olanpm) - [ (F(qs) — 7(F))ds + / Vo t(qeps) VAW,
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Underdamped Langevin dg; = p;dt, dp: = —V V(q:)dt — ['pedt + /2T dW;

In order to obtain some measure of ‘speed’ at which

mr(f) =+ fo (ge)dt = [o, f(%eva) = 7r(f) occurs as T — oo, use the fact that
n
F fo (f(qe) — 7(f))dt — N(0,0?) in distribution as T — oo for some ¢ > 0:
Claim: 0° =2 [, V,¢' TV,¢d#, where ¢ solves
—Lp = (—p Ve +VV(q) Vo +Tp 'V, =V, V)¢ = —m(f).

‘Proof’: Suppose there exists a well-behaved solution ¢ : R*” — R and use 1t&’s lemma
to obtain

<Z>(qt,pt)=¢(qo,po)+/ £<Z>(q57ps)ds+/ Vo(gs, ps) V2T dWs
0 0
= 0o, po) — / (F(gs) — n(F))ds + / V(G pe) V2T AW,
0 0

so that, .using [td's isometry and ergodicity, the variance of % fot(f(qs) —7(f))ds as
t— 00 ls

o = jim 2z / Voo (@0 I Vo, P =2 [ V507 TV005

t— o0
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Directional derivative of o2 with respect to I'

To summarise: \%T fOT(f(qt) —n(f))dt — N(O, 2 [en V,,(;STI'V,,qﬁdFr) in distribution,
where —L¢ := (—p'Vq+VV(q) 'V, +Tp'V, = ViTV,)p = f —n(f).

Theorem (Main result for underdamped Langevin dynamics)

do?.6T = =2 [ V¢ ' 6T V,hd7, where 6(q, p) = ¢(q, —p).

The direction 6T = [ V0 ® qu;dfr guarantees a decrease in asymptotic variance!
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Directional derivative of o2 with respect to I'

To summarise: \%T fOT(f(qt) —n(f))dt — N(O, 2 [0, Voo vaqﬁdfr) in distribution,
where —L¢ := (—p'Vq+VV(q) 'V, +Tp'V, = ViTV,)p = f —n(f).

Theorem (Main result for underdamped Langevin dynamics)

do?.6T = =2 [ V¢ ' 6T V,hd7, where 6(q, p) = ¢(q, —p).

The direction 6T = [ V0 ® qu;dfr guarantees a decrease in asymptotic variance!
Monte Carlo expression for solution ¢

Claim: ¢(q,p) = [;° E“9P)[f(q:) — m(f)]dt. (E@P denotes (qo, po) = (g, p))
‘Proof’: By the Feynman-Kac representation formula,

_ * (q,p) o - _ < (q,p) -
£ [T B~ m(nlde = — [ LB (@) — (e

=~ [ B (@) = (e = Fla) = (),

Monte Carlo expression for solution V¢

V(4 p) = V, / " E[f(qe) — n(F)]dt = / T E[VF(q) Omarlet,

with initial condition (qo, po) = (g, p) for dynamics (g, p:).

Optimal friction for Langevin sampling



Simulate (qt, pt) and (9p, G, Oy pt) and increment I by
o = [ VoowVddi,  Voap)= [ EVH(a) Onald,
0

where (qo, po) = (g, p).
1D quadratic potential V(q) = 3¢°:
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Figure: Left: Known relationship between o2 and I for f(q) = %qz. Middle: changes to I for

f(q) = 1q%. Right: for f(q) = q.
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Simulate (qt, pt) and (9p, G, Oy pt) and increment I by

or = /vp¢ ® qu;dﬁ-y V,ng(qa p) = A E[Vf(qt)Tapoqf]dt7

where (qo, po) = (g, p).

Bayesian inference for binary regression

@ 2359 data points (no. of summands in potential)
@ 642 features (no. of dimensions in the SDE)
Problem: to find the posterior mean, that is, fi(q) = ¢i.
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Figure: Left: Diagonal values of I over iterations. Right: Sum over i of estimated asymptotic
variances for f;(q).
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Optimal importance sampling for overdamped Langevin dynamics

joint work w/ Tony Leligvre, Gabriel Stoltz, Urbain Vaes,

with acknowledgements to A. Duncan, G. Pavliotis
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Optimal importance sampling for i.i.d. samples

Let (X,)nen be i.id. r.v.’s drawn from my(dx) oc eV =V gy
To estimate | = [ fd, use that
%Z,Nﬂ f(X,,)eU(X") . ferdTru B

%Zln\lzl eU(Xn) f eVdmy -

almost surely as N — oco.
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Optimal importance sampling for i.i.d. samples

Let (X,)nen be i.id. r.v.’s drawn from my(dx) oc eV =V gy
To estimate | = [ fd, use that

%Z,Nﬂ f(X,,)eU(X") . ferdTru

=1
% Zln\lzl eU(Xn) f eVdmy

almost surely as N — oo. The CLT and Slutsky's theorem gives

n 1L N _ ) eU(Xn)
m(,lvz,Nl F(Xa)eU /) _ w Laf(Xa) = e
1S euon) TStk

Z2
—>N(o, 7g/|(f— I)eU|2d7rU>

in distribution as N — oo, where Zy and Z are the normalization constants
for my(dx) o eVI=YNdx and w(dx) oc eV dx respectively.
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Optimal importance sampling for i.i.d. samples

Let (X,)nen be i.id. r.v.’s drawn from my(dx) oc eV =V gy
To estimate 7(f) = [ fdm, use that

%Zf\lﬂ f(Xn)eU(X") . ferdWU

=7(f
% ZnN:I eU(Xn) f eVdmy ﬂ-( )

almost surely as N — oco. The CLT and Slutsky's theorem gives

1 N U(Xn 1 W o U(Xn)
\/N(N Zi:l f(Xn)e (Xn) —7r(f)> _ \/ﬁZn 1( ( ) (f))e

7 2 V0 " ¥ Dy €U0

N(o, 7‘; /|(f - 7r(f))eU|2d7ru)

in distribution as N — oo, where Zy and Z are the normalization constants
for my(dx) o eVI=UNdx and w(dx) oc eV dx respectively.
By Cauchy-Schwarz,

(/|fw(f)ev)2 < (fie=atore)([ev) =28 [itr - m(rnetFan,

with equality for U = — log|f — = (f)].
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Overdamped Langevin dg: = —V V/(q;)dt — VU(q:)dt + v/2dW;

By the same ideas as before, there is an explicit CLT variance

) — 7(f th)
ﬁTfo qu) eu(gt )3: ( ’2ZU /|V¢| d7ru>

where ¢ solves —L¢ = f — 7 (f).

Theorem (Explicit optimal U on R (when U = U : R — R))

Under mild assumptions, the minimum asymptotic variance is achieved by

Ut) =~ V() ~tog| | " () —W(f))e_v(”dy'.

2 ; .
Theorem (Directional derivative of 02 = % [IVo|?dmy with respect to U)

do.su = 226 /5U(|V¢\ —/|V¢| dm> dry.
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Figure: Unperturbed potential V (top left), observable f (top right), optimal potential V + U
(bottom left), and corresponding solution to the Poisson equation ¢y (bottom right).
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