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Dimension s = 1: the only lattice is the left-Riemann rule

Forz € {1,...,n—1}, gcd(z,n) =1, it holds that
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Suppose f:[0,1) — R is p times continuously differentiable and periodic.
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Dimension s = 1: the only lattice is the left-Riemann rule
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Can we observe exponential convergence with lattice rules for

analytic, periodic functions when dimension s = 27
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A suitable generating vector for an integrand satisfying certain smoothness properties
can be found using a component-by-component (CBC) algorithm (Nuyens and Cools

2006; Kuo, Nuyens, and Cools 2006).
e For integrands belonging to certain weighted Sobolev spaces of smooth

functions, the CBC algorithm can be used to produce a generating vector
satisfying a rigorous error bound. As input, the CBC algorithm takes the weights

and smoothness parameter of the Sobolev space (and number of QMC nodes n).
e Fast CBC: FFT can be used to reduce the computational complexity of the CBC

algorithm.



Part Il: The periodic model of
uncertainty quantification for
PDEs



Let (Q,.7,P) be a probability space and D C R?, d € {1,2,3}, a
bounded physical domain with Lipschitz boundary.
Elliptic PDE with uncertain/random coefficient
Find u: D x Q — R that satisfies

=V - (a(x,w)Vu(x,w)) = f(x) for x € D,

+ boundary conditions on 0D

for almost all events w € Q. Here, the diffusion coefficient
a(-,w) € L(D) is uncertain.

In forward uncertainty quantification, one is interested in computing
certain response statistics of the solution, usually E[u] or E[G(u)] and
Var[u] or Var[G(u)], where G is a (linear) functional representing some
quantity of interest derived from the solution.

Depending on the application, two common models for the random field
A that appear in the literature are

e uniform and affine;
e lognormal.



Background

A popular model in the literature: the uniform and affine model

For x € D and w € Q,

a(x,w) = 3a(x) + Z Yi(w)y;(x), Y;ii.d. uniform on [—%, %]
i>1

Computing E[u(x, -)] (or some quantity of interest E[G(u)]) using

e Rank-1 lattice cubature rules with random shifts
= cubature error O(n~1*¢) at best. (Kuo, Schwab, Sloan 2012)

e Interlaced polynomial lattice rules
= higher order convergence O(n~1/P) for some 0 < p <1 (pis a
summability exponent s.t. (||¢)j||1);>1 € ¢P). (Dick, Kuo, Le Gia,
Nuyens, Schwab 2014)



Periodic model of UQ

In this talk, we instead model the uncertainty in the diffusion coefficient
as follows.

For x € D and w € Q,

a(x,w) =3a(x) + Z@(Yj(w))wj(x), Y; i.i.d. uniform on [—3, 3]

with the special choice ©(y) = sin(2my).

e Note that Z(w) :=sin(27 Y (w)) has the probability density

%\/11_7 on [-1,1], i.e, Z ~ Arcsine(—1,1).

e We can match the mean and covariance of a with the "“uniform

model” by choosing ©(y) = % sin(2my).
e Note that the periodicity is only assumed for the random/uncertain

variable!



Affine vs. periodic
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Let U :=[-1/2,1/2]N and D C R?, d € {1,2,3}, a nonempty bounded
Lipschitz domain. For the parametric PDE
=V - (a(x,y)Vu(x,y)) =f(x) forxeD, yecU
u(x,y)=0 forx e 9dD, y € U,

with u(-,y) € HY(D), f € H71(D), and

a(x,y) =a(x) + Y _ sin(2my;)es(x),

j=1
with assumptions
e 0 < amin<a(x,y) <amax <ooforallxe D, yeU
o > 2 I%illfe < oo for some p € (0,1)
o [Pl = fIgp2llLee = -

[K—Kuo—Sloan 2020] showed that there exists a constructible lattice rule
satisfying the QMC cubature error

11,(G(t))—Qns(G(u))| < Cn~P  with constant C > 0 independent of s,

for any linear quantity of interest G: H}(D) — R.

11



Numerical example: QMC for PDE [K-Kuo—Sloan (2020)]

Let us consider the PDE problem
—V-(aper(x,y)Vu(x,y)) = X2, U(',y)|8D :07
in the physical domain D = (0, 1)? with the diffusion coefficient

100
_ a 11
aper(x,¥) = 2+ Y _sin@my)¢s(x), v € [-3, 3],
Jj=1
. ¢ =0 o o o . 0
where 9;(x) = 7/ sin(jmx1) sin(jmxz2). Note that |[1);||( o j°.
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Figure 7: Left: 9 = 2. Right: 6 = 4. 2



Part Ill: Kernel interpolation
over lattice point sets




Let us continue the study of our elliptic model PDE problem.

In [K—Kazashi-Kuo—Nobile-Sloan (2022)], we studied kernel interpolation
of smooth, periodic functions based on lattice point sets. \We considered
the following setting:

e Let o > 1 be an integer and let H := H; o~ be the Hilbert space
containing absolutely continuous, somewhat smooth periodic
functions 7: [0,1)° — R endowed with the norm

1
H ||H Z (277)20““"%,‘ [0,1]1u1 0,1]s—Iul Ha &

uC{l:s}
provided that f has mixed partial derivatives of order .

2
dyy;

[
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The space H is actually a reproducing kernel Hilbert space (RKHS), with
an explicitly known and analytically simple reproducing kernel:
Ky.y)= > w]]n0y),
uC{l:s} jeu

where

na(%y/) = (1()201)1((;0[)!82(1(&&(3()/ _y/))v )/ay/ € [07 1]»

where By(y) = y* —y + ¢, Ba(y) = y* —2y* + y? — 5, and so on, are

the Bernoulli polynomials. In particular,
(f,K(,y))n =f(y) forallfeHandyce€l0,1]°.
Example: If (vy)ucq1,....s) are product weights, i.e.,
Yu :H7j7 ug{la"'7s}a
J€EuU
then

s

K(y.y") = [T +vmalyiv))-

Jj=1

14



Suppose that one is interested in finding an approximation for the
function f € H based on the point evaluations f(t1),...,f(t,),
t; € [0,1]°. We introduce the kernel interpolant

. kz
foly) == kZ:;ckK(tk,y), ty = mod(n,1>, (1)
and require the interpolation property f,(tx) = f(tx) for hold for all
k =1,...,n. Then the coefficients can be solved from the linear system
Kc=f,
where ¢ := [c1, ..., cy]T are the coefficients in (1) and

Kio = K(tk, te) and £ :=[f(t1),...,f(ta)]".
Note that Ky, = K((kfe)z,O), i.e., K is a circulant matrix =

n

c = ifft(££e(f)./£18(K 1))

This can be computed in O(nlog n) time!
The kernel interpolant is cheap to construct!

15



In analogy to the cubature setting, the PDE problem

-V - (a(x,y)Vu(x,y)) =f(x) forxeD, yeU,
u(x,y)=0 forx e 0D, y € U,
with u(-,y) € H}(D), f € H"1(D), and

a(x,y) = a(x) + ) _sin(2my;);(x)

j=1
and assumptions

e 0<amn<a(x,y)<amax <ocforallxe D, yeU
o > 21 Iillf~ < oo for some p € (0,1)
o [|Y1llee > ||t2llpee > -+

[K-Kazashi-Kuo—Nobile=Sloan 2022] showed that there exists a sequence
of SPOD weights (entering both the expression of the kernel K in the
interpolant and as inputs to a CBC algorithm) and a constructible lattice
rule satisfying the kernel approximation error

lu — unll2(uxpy = (’)(nleer%) with constant C > 0 independent of s.



Kernel approximation for PDE: L2 error

Let us consider the PDE problem
—V-(aper(x,y)Vu(x,y)) = X2, U(',y)|8D :07
in the physical domain D = (0, 1)? with the diffusion coefficient

100
aPEY(x7y) =1+ E Sm(2ﬂ—yj)¢j(x)ﬂ Y € [07 1]7
j=1
) _ ._9 . . . . . ._0
where 9;(x) = ¢j~"sin(jmx1) sin(jmx2). Note that |[9);]| 1 o j°.
0=12¢=02/V6,p=1/11,s =100 0=24,c=02/V6,p=1/22 5= 100
_min = 0.54345 and Gpax = 1.45655 o 0min = 0.88705 and a@yax = 1.11295
= 10~
P R 1074550
- T L 107
) - Se. | ®
5 107 %o E 1070
£ ®e 1077 Be
g 10 . N ° « SPOD
§ . 10 .
2107 - 107 -
& _— 10-10 ® .
10711
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Reducing the computational complexity

The SPOD weights used in the construction of the kernel interpolant were

b” S(ev, mj)

2
2 ] JEN
wi= o 2o (m) =] () e
mye{Ll:a}ul icu \V/2et/e¢(2aN)
e the cost to obtain the generating vector z is O(s n log n + s a? n);

e the cost of evaluating the kernel interpolant is O(s? a2 n).

New idea (see lan’s talk on Friday): leave out the order-dependent

part (|mu|!)1%A in (2), get

) b S(ar,my) \ T ./ bUS(a,m) \ T
Y= Z H( /2el/c< 204)\)) :H <Z ( 261/CC(2O[A)) )
mye{l:a}lvl jEu jeu “m=1
These are product weights (“serendipitous weights” ), where
e the cost to obtain the generating vector z is O(s n log n);
e the cost of evaluating the kernel interpolant is O(s n).

18



Kernel approximation for PDE: [? error (redux)

Let us consider the PDE problem
_V'(aper(xvy)vu(xmy)) = X2, U('7Y)|8D :07

in the physical domain D = (0, 1)? with the diffusion coefficient

100

aDEY(X7y) =1+ ZSin(27Tyj)¢j(X)ﬂ Yji € [0, 1],
j=1

where ;(x) = ¢j =Y sin(jmx1) sin(jmx2). Note that ||1); || o< j~°.

0=12,c=02/V5,p=1/11, s =100 6=24,c=02/V6,p=1/22,5=100
Qi = 0.54345 and ayax = 1.45655 4 Gmin = 0.88705 and @pax = 1.11295
107

107*

10~
M 107°
== 6 =

10 v
1077 ¥y « SPOD

1078 ¥u Serendipi
L = Serendipitous

107° *

1071 -

10"

107° - . 107" - - .
10 10? 10* 10* 10° 10 10% 10° 10* 10°

number of nodes n number of nodes n

approximate error
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In certain situations, the product weights can outperform SPOD weights.

0=12,¢=04/V6,p=1/1.1,5s =10 0=12,¢=04/V6, p=1/1.1,s =100
min = 0.08690 and @y, = 1.91310 min = 0.08690 and @y, = 1.91310
10~ 10~ g

10-2|®

107° ” 3

107 -

approximate error
approximate error
[ ]

107° - 10°°
|

1076 - - L 1078 - - i
10 10? 10% 10 10° 10 10% 10° 10 10°

number of nodes n number of nodes n



The product weights can be used to perform computations for higher
dimensional problems (here, s = 1000).

0=12 ¢=04/V6, p=1/11, s = 1000 0 =24, c=15/V6,p=1/22, 5= 1000 6 =36 r‘*lo/f]?*l/&&ﬁ*lUUU
6834

i = 0.08690 and @y = 1.91310 in = 0.15288 and apay = 1.84712 Gin
= 107" — 107!
PO S 1072 pey
== oo, ~3 oy
5 N : 1070 ey 10 O &
= L] T —4 S
5 1073 u 1074 o 10 [] N
2 L) [ ] S 10-5 LI
= = 107°
£ " 107° " =
Z 10! -6 «
g 10 - = o
& LI 1077 N
- 1077 " s =
10°° ) LI 10 ..
1078 10~ ]
L !
107° ; 107° - _ oS - .
10 10? 10° 10 10° 10 10? 10* 10 10° 10 10? 10* 10 10°
number of nodes n number of nodes n number of nodes n
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Part 1V: Application to an
inverse problem




The complete electrode model

Let D := {x € R?: ||x|| < 1}. Let {Ex}t_; C 9D be an array of L := 16
equidistantly spaced non-overlapping electrodes of width 0.2 on the
boundary OD. Fix the current feed I € RL and let o € L5°(D). The
forward problem is to find the electromagnetic potential u € H'(D) as

well as U € RE, the potentials on the electrodes, which satisf;
E B

V- (cVu)=0 in D,

O’% =0 on 5‘D\Ui:1?k,
u+2zo9% = Uc onE ke{l,...,L},
Je 0%8dS =k, ke{l,....L},

with n denoting the outer normal.
Moreover, we take z, = 1 Vk.

The forward problem is solved numerically using EIDORS software
(FEM). 22



Fix the current pattern I, :=e; —exy1 € RL, ke {1,...,L —1}.

Kernel-based surrogate for the forward problem: Let us parameterize
the conductivity as

o(x,y) =1+ 7 Zsin(27ryk)wk(x), x€eD, ye[01],

x1+1 xo+1

where ¥, (x) := (2+J B sin(mix*5=) sin(7jx 45— ), ¥ = 1.2, the sequence
(ik,jk)k>1 is an ordering of the elements of N x N s.t. |1k |10 = O(k™Y)

by Weyl's asymptotics. We set s = 30.

Denote by U(y) := vec([Uy, ..., Ui_1]) € RHED the (flattened)
voltage matrix, comprised of the electrode potential measurements
corresponding to the current pattern I1,..., 1,7 and y € [0, 1]°.

We construct the (vector-valued) QMC—kernel interpolant

Un(y) =S 1_, ckK(tk,y) € RHED (using serendipitous weights) for
the mapping G: y — U(y) based on n = 1024207 QMC nodes satisfying
G(tk) = L{,,(tk) Vk.

23



Experiment setup
We have constructed the QMC—kernel interpolant U,(y) offline based on

the periodically parameterized model for o(x,y). For the numerical
experiments, we
e fix some target conductivity Otarget and numerically compute the
“exact” electrode potential measurements
Ucracs := vec([UL et - - - USSE]) € REE-D. To avoid the inverse
crime, we do not use the same FE mesh that was used to build the

surrogate; instead we use a finer FE mesh.
e we contaminate the electrode potential measurements with noise

Unoisy = Ucxact + n, n-~ N(Ov 7—2/)7

where 7 := 1073 maxj,k:l,... L(L—1) |(chact)j - (chact)k|-

Our reconstruction is o(x,y*), where

y* = argmin{|| Unoisy — Un(¥)|*}-
y€[o,1]
The minimization is carried out using 1sqnonlin in MATLAB with the

levenberg-marquardt algorithm.
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Figure 10: Left

. target conductivity.

. Right: reconstructed

conductivity.
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Conclusions

® Kernel interpolation method that can be used to approximate the output
high-dimensional parametric PDEs. Kernel interpolant can be constructed
efficiently at cost O(n log n). No multi-index sets! (Compare with sparse grids
or trigonometric approximation.)

® Using product weights, practical for challenging high-dimensional problems (e.g.,
as surrogates for Bayesian inversion).

® For EIT, the kernel interpolation scheme could be useful for efficient recovery of

other uncertainties (domain shape, electrode positions, contact resistances, etc.).
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