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Model problem

LetH be a separable Hilbert space (e.g. H = L2(D)), T > 0 and consider theH-valued Itô-SDE

dX(t) = [AX(t) + F (X(t))]dt+G(X(t))dW (t), t ∈ [0, T ], X(0) = X0. (SPDE)

• A : D(A) ⊂ H → H is a densely defined, self-adjoint, linear operator. Further, A generates
an analytic semigroup (S(t) = eAt, t ≥ 0) ⊂ L(H) and is boundedly invertible.

• F : H → H is a (Lipschitz) non-linearity.
• W : Ω× [0, T ]→ H is a Q-Wiener process with trace class covariance operator Q ∈ L+

1 (H).
• G : H → LHS(H;H) is Lipschitz, whereH := Q1/2H is the RKHS associated toW .
• X0 ∈ L2(Ω;H).

There is a unique mild solutionX : Ω× [0, T ]→ H to (SPDE), given by

X(t) = S(t)X0 +
∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)G(X(s))dW (s), t ∈ [0, T ].

Under mild assumptions: X(t) ∈ Lp(Ω; Ḣα) for some α > 0, t ∈ [0, T ] and Ḣα := D((−A)α/2).
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Pathwise approximations

• Spatial approximation: ReplaceH by a discrete subspace VN with dim(VN) = N ∈ N and
let PN : H → VN be the ONP onto VN . The discrete operator AN : VN → VN generates a
semigroup SN = (SN(t), t ≥ 0) on VN .

• Noise approximation: Let (ek, k ∈ N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loève expansion to approximateW via

W (t) ≈WK(t) :=
K∑
k=1

(W (t), ek)Hek, K ∈ N.

• Time stepping: UseM ∈ N time steps and a rational approximation r(∆tAN) ≈ SN(∆t)
for ∆t = T/M. For the non-linear part:

– Euler-Maruyama scheme: Slow variance decay of order O(M−1) . . .
– Milstein scheme: Requires to simulate infinite-dim. iterated integrals, which is

expensive/infeasible . . .
⇒ Extend the antithetic MLMC-Milstein scheme of Giles and Szpruch (2014) for SDEs to
infinite dimensions.
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Truncated Milstein scheme
From now on, assume F ≡ 0. For fixedM,N,K, the truncated Milstein iteration reads

Y N,K
m+1 = r(∆tAN)PNY N,K

m + r(∆tAN)PNG(Y N,K
m )∆mWK

+
r(∆tAN)PN

2

K∑
k,l=1

G′(Y N,K
m )

(
PNG(Y N,K

m )√ηlel
)√

ηkek (∆mwk∆mwl − δk,l∆t).

We have used wk(·) := (W (·), ek)H , where (ek, k ∈ N) denote the eigenfunctions of Q with
corresponding eigenvalues (ηk, k ∈ N) ⊂ R≥0 in decaying order.

We introduce G : H → LHS(LHS(H);H) and the L1(H)-valued increment

∆mWm,K := ∆mWK ⊗∆mWK −∆t
K∑
k=1

ηk ek ⊗ ek.

trunc. Milstein=⇒ Y N,K
m+1 = r(∆tAN)PN

(
Y N,K
m +G(Y N,K

m )∆mWK + G(Y N,K
m )∆mWm,K

)
.
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Antithetic coupling I

FixM,N,K ∈ N and let the coarse scale discretization be given by

Y c
m+1 = r(∆tAN)PN

(
Y c
m +G(Y c

m)∆mWK + G(Y c
m)∆mWm,K

)
, m = 0, . . . ,M − 1.

Fine scale: Let δt := ∆t/2 and denote form = 0, 1/2, 1, . . . ,M − 1/2,M , the corresonding "fine
increments" δmWK and δmWm,K , so that ∆mWK = δm+1/2WK + δmWK .
The fine discretization with 2M time steps andNf ≥ N,Kf ≥ K is then given by

Y f
m+1/2 = r(∆tANf )PNf

(
Y f
m +G(Y f

m)δmWKf + G(Y f
m)δmWm,Kf

)
,

Y f
m+1 = r(∆tANf )PNf

(
Y f
m+1/2 +G(Y f

m+1/2)δm+1/2WKf + G(Y f
m+1/2)δm+1/2Wm,Kf

)
.

The antithetic counter part of the fine discretization is

Y a
m+1/2 = r(∆tANf )PNf

(
Y a
m +G(Y a

m)δm+1/2WKf + G(Y a
m)δm+1/2Wm,Kf

)
,

Y a
m+1 = r(∆tANf )PNf

(
Y a
m+1/2 +G(Y a

m+1/2)δmWKf + G(Y a
m+1/2)δmWm,Kf

)
.
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Antithetic coupling II

We aim to estimate E (Ψ(X(T ))) for Ψ ∈ C2
b (H; R) with MLMC.

Rather than using Ψ(Y f
M) on the fine levels of the MLMC estimator, we use the antithetic average

ΨM :=
Ψ(Y f

M) + Ψ(Y a
M)

2
.

For any Ψ ∈ C2
b (H; R) it holds that that

• E(ΨM) = E(Ψ(Y f
M)), (no additional bias)

• E
(∣∣ΨM −Ψ(X(T ))

∣∣2) ≤ C (M−1 +N−2α0 +K−2β
)
, (strong error preserved)

• For Y M := Y
f
M

+Y aM
2 there holds E

(∣∣ΨM −Ψ(Y c
M)
∣∣2) ≤ CE

(∥∥Y M − Y c
M

∥∥2

H

)
.

⇒ "Antithetic variances" decay faster than O(M−1).
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Improved variance decay for antithetic coupling in SPDEs

ML corrections: E
(∣∣ΨM −Ψ(Y c

M)
∣∣2) ≤ CE

(∥∥Y M − Y c
M

∥∥2

H

)
.

Theorem (A.L. Haji-Ali and A.S., 2023)
Let supt∈[0,T ]X(t) ∈ L8(Ω; Ḣα) hold for some α ≥ 1, and letM,Nf , N,Kf ,K ∈ N be such that
Nf ≥ N and Kf ≥ K. Under suitable assumptions on F , G, X0 and Q, there is a constant C > 0,
independent of M,N, and K, such that the corrections in the antithetic Milstein scheme satisfy

E
(∥∥Y M − Y c

M

∥∥2

H

)
≤ C

(
M−min(α,2) +N−2α0 +K−2β

)
.

• Recall that for the Euler/truncated Milstein scheme without antithetic correction, we have

E
(∥∥Y f

M − Y
c
M

∥∥2

H

)
≤ C

(
M−1 +N−2α0 +K−2β

)
.

• Error balancing viaN ≈Mmin(α,2)/2α0 andK ≈Mmin(α,2)/2β on all levels.
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Theorem (A.L. Haji-Ali and A.S., 2023)
Let Ψ ∈ C2

b (H; R), M0 ∈ N, and let M` := M02` for ` ∈ N0.

Assume that
• there are C > 0 and γ = γ(G) > 0 such that

"Cost of sampling ΨM on level `" ≤ CM1+γ
` , ∀` ∈ N0.

• for any δ ∈ (0, 1) there is a constant C = C(Ψ, δ) > 0 such that∣∣E(Ψ(X(T )))− E(Ψ(Y N`,K`
M`

))
∣∣ ≤ CM−(1−δ)

` , ∀` ∈ N0.

Then, under suitable conditions, there exists for any ε ∈ (0, e−1) an antithetic MLMC-Milstein
estimator Eanti

L (ΨM) such that

E
(∣∣Eanti

L (ΨM)− E(Ψ(X(T )))
∣∣2) ≤ ε2.

The computational complexity CML to compute a realization of Eanti
L (ΨM) is bounded by

CML ≤


Cε−2, min(α, 2) > 1 + γ,

Cε−2| log(ε)|2, min(α, 2) = 1 + γ,

Cε
−2− 1+γ−min(α,2)

1−δ , min(α, 2) < 1 + γ.
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Numerical example: Stochastic heat equation

• Let D = [0, 1]d, d ∈ {1, 2},H := L2(D) and let A := 4 be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((λn, fn), k ∈ N) of (−A) are given in closed form.

• W is a Q-Wiener process with operator Q = ((−4)−s) for a smoothness parameter s > 0.
• We consider the stochastic heat equation given by

dX(t) = 4X(t)dt+G(X(t))dW (t), X(0) = X0, (1)

for a randomX0 ∈ L8(Ω; Ḣ2) and with diffusion coefficient G : H 7→ LHS(H;H) given by

G(v)u :=
∞∑
j=1

(v, ej)Hej+1(u,√ηj+1ej+1)H + (1, ej)Hej(u,
√
ηjej)H, v ∈ H,u ∈ H.

• It holds thatX(t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1 + s, 2)).
• We combine the antithetic Milstein scheme with a spectral Galerkin approach and truncated

Karhunen-Loève expansions forW . All errors are balanced via α0 = α and β = s/d− 1/2.
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• It holds thatX(t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1 + s, 2)).
• We combine the antithetic Milstein scheme with a spectral Galerkin approach and truncated

Karhunen-Loève expansions forW . All errors are balanced via α0 = α and β = s/d− 1/2.

D-MATH
Seminar for Applied Mathematics 8



Numerical example: Stochastic heat equation

• Let D = [0, 1]d, d ∈ {1, 2},H := L2(D) and let A := 4 be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((λn, fn), k ∈ N) of (−A) are given in closed form.

• W is a Q-Wiener process with operator Q = ((−4)−s) for a smoothness parameter s > 0.
• We consider the stochastic heat equation given by

dX(t) = 4X(t)dt+G(X(t))dW (t), X(0) = X0, (1)
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for a randomX0 ∈ L8(Ω; Ḣ2) and with diffusion coefficient G : H 7→ LHS(H;H) given by

G(v)u :=
∞∑
j=1

(v, ej)Hej+1(u,√ηj+1ej+1)H + (1, ej)Hej(u,
√
ηjej)H, v ∈ H,u ∈ H.

• It holds thatX(t) ∈ L8(Ω; Ḣα) for α ∈ [1,min(1 + s, 2)).
• We combine the antithetic Milstein scheme with a spectral Galerkin approach and truncated

Karhunen-Loève expansions forW . All errors are balanced via α0 = α and β = s/d− 1/2.
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Log-plot of the estimated antithetic difference E(‖Y `M` − Y
`−1,c
M`

‖2H), and the standard multilevel difference
E(‖Y `,fM` − Y

`−1,c
M`−1

‖2H) against the refinement level. The "antithetic variances" decrease proportional to

M
−min(1+s,2)
` , whereas the standard ML difference decreases proportional toM−1

` .
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Conclusions and outlook

Summary:
• First infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs
• Avoid simulation of iterated integrals
• Significantly improved complexity (under certain conditions)
• Increase in efficiency depends on smoothness of the mild solution
• Performance depends on the cost of evaluating G and the decay of the EVs of Q

Extensions:
• Include an (antithetic/improved) noise approximation
• SPDEs with Lévy noise (⇒ BDG inequalities)
• First-order hyperbolic SPDEs (exploit weak formulation)
• Tamed schemes for non-Lipschitz drift coefficients
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