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PDE problem formulation

—V(a(z, 2)Vu(z, w, 2)) = f(z,w) forx e D
u(x,w,z) =0 for x € 0D

» xcDCR? d=1,23, is the physical variable,

» w = (wy,wi,...,ws) and z = (21, 29,...,s) are independent
stochastic parameters, w; ~ N(0,1) and z; ~ N(0,1) i.i.d.,

» lognormal coefficient — for a; € L>(D) suff. smooth

a(z,z) = exp (szaj(x)>7

J=1

> flz,w) = > wifi(@) with f; € LX(D), fo > 0on D
=0

Goal: compute cdf of quantity of interest/functional G of the solution

F(t) =P[G(u) <t], forsometecR also pdf f = def
art
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PDE problem formulation

~V(a(z, y)Vu(z,y)) = f(z,y) for 2 € D
u(z,y) =0 for x € 0D

» xcDCR? d=1,23, is the physical variable,

» w = (wy,wi,...,ws) and z = (21, 29,...,s) are independent
stochastic parameters, w; ~ N(0,1) and z; ~ N(0,1) i.i.d.,

» lognormal coefficient — for a; € L>(D) suff. smooth

a(z,z) = exp (szaj(x)>7

j=1
> f(z,w) szfl with f; € L3(D), fo > 0 on D

> write y = (yo,y1>~--7y23) = (wo, w1, ..., Ws, 21, 22, - - - Zs)
Goal: compute cdf of quantity of interest/functional G of the solution
1F

F(t) =P[G(u) <t], forsometecR also pdf f = (lf
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Formulate cdf as an expected value
Key idea: formulate the cdf at ¢ € R as an expected value/integral

F(t) = Eind(t = G(u))]

= /stﬂ 1nd(t— (Hp Yj > dy,
Yy

where ind(t) = 1 if ¢ > 0 and 0 otherwise, and p(y) = %677.

M
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Formulate cdf as an expected value

Key idea: formulate the cdf at t € R as an expected value/integral

F(t) = Eind(t = G(u))]

= /stﬂ 1nd(t— (Hp Yj > dy,

M

Yy

where ind(¢) = 1 if t > 0 and 0 otherwise, and p(y) = e 7.

2
Difficulties:
1. curse of dimensionality because s is large,
2. integrand g(y) = ind(t — G(u(+,y)) is discontinuous, and
3. evaluating the Qol G(u) requires solving the PDE.

Strategy:
1. use quasi-Monte Carlo to tackle high-dimensional integral,
2. use preintegration to “smooth out” the discontinuity, and
3. approximate the PDE using finite elements.
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Related work

» Conditional Monte Carlo/sampling:
[L'Ecuyer, Perron 1994], [Fu, Hu 1998], [Glasserman, Staum
2001], [Holtz (PhD thesis) 2011], [Achtis, Cools, Nuyens 2013],
[Asmussen 2018], [Bayer, Ben Hammouda, Tempone 2022] ...

» Preintegration theory:
[Griebel, Kuo, Sloan 17], [Griewank, Kuo, Ledvey, Sloan 2018]
» Density estimation using QMC with preintegration/conditioning:
[L'Ecuyer, Puchhammer, Ben Abdellah 2022], [Gilbert, Kuo,
Sloan 2022]

» QMC for approximating the expected value for lognormal PDEs:
[Graham, Kuo, Nuyens, Scheichl, Sloan 2011], [Graham, Kuo,
Nichols, Scheichl, Schwab, Sloan 2015], [Hermann, Schwab 2019]
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Quasi-Monte Carlo methods on R?
N-point randomly shifted lattice rule:

/ng(y)<Hp(yj)> dy ~ Qung =
j=1

A\

k en
(58]

{-} is the fractional part,

&1 is the inverse cdf of p,
Zgen € N° is the generating
vector,

random shift A ~ Uni([0,1)*).
random shifting = unbiased
good vectors zgen constructed

using component-by-component
(CBC) algorithm

1

Figure: 2D lattice rule on [0, 1]?
with N = 55, 2gen = (1, 34).

1
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QMC error

Component-by-component error [Nichols & Kuo 2014]
For g € Hs, IN prime and good zgen

2
Ea /R g(y)(Hp(yj)) dy = Qang| | < CoaN " lglly,, 6>0.
S J:l
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QMC error

Component-by-component error [Nichols & Kuo 2014]
For g € Hs, IN prime and good zgen

Ea { /R 9(y) (EP(%)) dy — Qung

where g € ‘H, =: s-dimensional weighted Sobolev space with:
> weights: v :={v >0:uC{l,...,s}},
> weight function: ¢ : R — R,

> weighted norm
2
(y) (HW%)) (HM%)) dy
JEU Jé€u

ol = > = [ 5
where {1:s}:={1,...,s} and y, = (y; : j € u).

2

< CsyNTlglly,., 6>0.

aH

uC{ls}
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QMC error

Component-by-component error [Nichols & Kuo 2014]
For g € Hs, IN prime and good zgen

Ea { y) ( 11 p(w)) dy — Qa,ng
j=1
where g € ‘H, =: s-dimensional weighted Sobolev space with:

> weights: v :={v >0:uC{l,...,s}},
> weight function: ¢ : R — R,

> weighted norm
2
(y) (HW%)) (HM%)) dy
JEU Jé€u

ol = > = [ 5
where {1:s}:={1,...,s} and y, = (y; : j € u).

2

< CsyNTlglly,., 6>0.

aH

uC{ls}

Problem: g = ind(t — G(u)) & Hs, even though G(u) is smooth!
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Preintegration (a.k.a. conditional sampling)
Problem: g = ind(t — G(u)) is not smooth enough for QMC!

Solution: preintegration, i.e., smooth a simple discontinuity,
g(y,z) = ind(t—p(y, 2)), for a “sufficiently regular’ ¢ : R*T! — R,

by integrating out a single (specifically chosen) dimension

2s
/ g(y)<Hp(yj)> dy
R2s+1 =0
0o 2s
_ /st [/_ g(yo,yl:zs)p(yo)dyo] (Hp(yj)> dy .0,

Jj=1

::Pog(y1:2s)

Y1:25 = (y17 Y2, .- 7y28)'

8/19



Preintegration (a.k.a. conditional sampling)
Problem: g = ind(t — G(u)) is not smooth enough for QMC!

Solution: preintegration, i.e., smooth a simple discontinuity,
g(y,z) = ind(t—é(y, 2)), for a “sufficiently regular’ ¢ : R*T! — R,

by integrating out a single (specifically chosen) dimension

2s
/ g(.u)(Hp(yj)) dy
RQS+1 ]:0
0o 2s
_ /st [/_ g(y07y1:23)p(y0)dy0] (Hp(yj)> Ay .0,

Jj=1

::Pog(yI:QS)

Y195 = (yl) Yy2,. .. ,?/23)-

[Griewank, Kuo, Ledvey, Sloan 2018] showed that Pyg is as smooth as
¢, but in one dimension less (under technical conditions)?.

1See also [Griebel, Kuo, Sloan 2010], [Griebel, Kuo, Sloan 2013] and [Griebel, Kuo, Sloan 2017]. 8/19



How to do preintegration in practice?
Assume

aiqb(y) >0 forally e R and ¢(y) — oo as yy — oo,
Yo

then the point of discontinuity in the yq direction is unique
§(y1:28) = (é. eER: ¢(§7y1:25) = t)
Preintegration w.r.t. 1o simplifies to
o0 . g(yl:Zs)
Pog(y) =/ ind(t—¢(y))p(yo) dyo :/ p(yo) dyo = P(§(Y1.05))-

—00 —00
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How to do preintegration in practice?
Assume

aiqb(y) >0 forally e R and ¢(y) — oo as yy — oo,
Yo

then the point of discontinuity in the yq direction is unique

§(Yr1.25) = (E € R: (&, Y1.05) = 1)

Preintegration w.r.t. 1o simplifies to

0o &(Y1.25)
Pog(y) =/ ind(t—é(y))p(yo) dyo :/ P(vo) dyo = P(§(Y1.25))-

—00 —00

Numerical preintegration procedure: To evaluate Pyg(y.05)

1. Compute point of discontinuity £(y;.9)
(analytically/numerically)
(y)
2. Approximate the 1D integral p(y1) dyr

oo 9/19



Preintegration applied to Qol from PDE

o(y) = G(u(-y))
where G € H=Y(D) and u(x,y) is PDE solution.
For our series RHS

z,y) = Zwiui(m,z)
=0
where
—V(a(z, 2)Vui(z, 2)) = fi(x) fori=0,1,...,s

Point of discontinuity is
t—> i wiG(ui( 2))

5(3/1:23) = g(uo(-,z))
and the preintegration step simplifies to
. t—2 i wig(ui(-,z))>
Pylind(t —G(u)| = ®
b ind(t - G(w)] ( Gluo(~2) )’

which is smooth if G(ug(+, z)) > 0 for all z. 10/19




Approximating cdf of Qol using QMC with preintegration

Py[ind(t — G(u)] = <I>(t — > i wiG (-, z))>7

g(u0<'> Z))

After preintegration we apply QMC in the remaining 2s dimensions

F(t) ~ FN(t) = QQ&N(PO [md(t—g(u))D = QQS,N((I)Of)
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Approximating cdf of Qol using QMC with preintegration

Py[ind(t — G(u)] = q)(t - Z’gwggﬁ( Z))>7

After preintegration we apply QMC in the remaining 2s dimensions

F(t) ~ FN(t) = QQ&N(PO [md(t—g(u))D = QQS,N((I)Of)

Preintegration + QMC procedure for Qol
For each QMC lattice point Tf, = (741, Tk,2, - - -, Th,25):

1. Solve PDEs for uy(7y) and a(7g) = d_i_ ) 7 iui(Tk)
—V(a(te)Vuo(ti)) = fo and  — V(a(r)Va(rk)) ZTk’sz

t—G (>0 Thaui(Tr))

2. Compute point of discontinuity (7)) =

G(uo(Tk))
3. Evaluate preintegrated function Py(7)) = ®(&(7))
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Why are probabilities hard to compute using quadrature?

» white = 0, grey = 1 and blue is
the line of discontinuity &.

Figure: “Aerial view" of indicator
function in 2D
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Why are probabilities hard to compute using quadrature?

>

>

white = 0, grey = 1 and blue is
the line of discontinuity &.

QMC points above & (blue)
evaluate to 1, and points below
evaluate to 0.

QMC points are designed to be
well-distributed on the whole
domain, but here the important
thing is to resolve the
discontinuity.

Figure: “Aerial view" of indicator
function in 2D, with QMC points
in red.
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Why are probabilities hard to compute using quadrature?

» white =0, grey = 1 and blue is
the line of discontinuity &.

» QMC points above £ (blue)
evaluate to 1, and points below
evaluate to 0.

» QMC points are designed to be
well-distributed on the whole
domain, but here the important
thing is to resolve the
discontinuity.

Figure: “Aerial view" of indicator
> Preintegration solves this problem  function in 2D, with QMC points

by first computing &. in red.
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Error of QMC with preintegration for cdf of Qol

Theorem (Gilbert, Kuo, Srikumar 2023+)

Let F' be the cdf of the quantity of interest G(u), for some
G € H™Y(D), and suppose

1. Monotone condition: fo > 0 on D and G(v) > 0 for all v > 0,
2. QMC rule is constructed using CBC algorithm with N prime,

Then the RMSE of the QMC with preintegration approximation,
Fn(t) = Qas,n(Po(ind(t — G(u))) , satisfies

VE[F(t) - Fy()2] < C N7 for5 >0,

where C' < oo depends on 6, s, G, {fi}, and t.
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Error of QMC with preintegration for cdf of Qol

Theorem (Gilbert, Kuo, Srikumar 2023+)

Let F' be the cdf of the quantity of interest G(u), for some
G € H™Y(D), and suppose

1. Monotone condition: fo > 0 on D and G(v) > 0 for all v > 0,
2. QMC rule is constructed using CBC algorithm with N prime,

Then the RMSE of the QMC with preintegration approximation,
Fn(t) = Qas,n(Po(ind(t — G(u))) , satisfies

VE[F(t) - Fy()2] < C N7 for5 >0,
where C' < oo depends on 6, s, G, {fi}, and t.
» Same rate as integrals/expected values!
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Error of QMC with preintegration for cdf of Qol

Theorem (Gilbert, Kuo, Srikumar 2023+)

Let F' be the cdf of the quantity of interest G(u), for some
ge H_I(D), and suppose

1. Monotone condition: fo >0 on D and G(v) > 0 for all v > 0,
2. QMC rule is constructed using CBC algorithm with N prime,
3. uy, ~ u using piecewise linear FE with meshwidth h > 0.

Then the RMSE of the QMC with preintegration & FE approximation,
Frn(t) = Qs N(Po(ind(t — G(ug))), satisfies

VE[F(®) ~ Fun(t)2] < N 402), for§ >0,
where C' < oo depends on 6, s, G, {f;}, and t.
> Same rate as integrals/expected values!
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Sketch proof for QMC error

» Verify G(u) satisfies the conditions for preintegration theory:
¢
(a) G(u) is suff. smooth, %Q(u) € Hos for £ =1,...,2s —1, and
Yo

(b) aiyog(u(-,y)) > 0 for all y € R**1,

» Abi Srikumar has shown (a) using bounds from, e.g., [Graham,
Kuo, Nichols, Scheichl, Schwab, Sloan 2015].

> fo>0 = a@u =wug >0 (by the Strong Maximum Principle)
Yo

- 8535:) - g(g;;) >0 = (b) (by condition on G)

> Preintegration theory implies that Py[ind(t — G(u))] € Has.
» CBC error bound in Ha, then gives the desired error bound.

Explicit constant, which depends on =, §, s, {|la;||z=}, {fi}.
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Numerical results

Y (af@, w)Vu(e,w,2) = 2fol@) + (@), @eD
u(z,w,z) = 0, x € 0D

D =(0,1)? (d=2)

aj(z1,x2) = 5 sin(jmzy) sin((j + 1)7xa), with a >0

>
1+ (jm)?
fo(x1, ) = sin(mzy) + sm(mc )and f1 =1

Qol is point evaluation: G(v) = v(1/4/(2),1//(2))
s = 64

PDE solved using linear FEM

vVvyVvYyyvVy ViV
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Approximations of cdf and pdf

Figure: Plot of approximated cdf (left) and pdf (right) for o = 30.
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N convergence

20 —o—MC
10 —— QMC
b —4&— QMC & preint.
e . — — 1/VN
10 F T — — 1N
— —e—_

T o—

Figure: Convergence in N for MC, QMC and QMC after preintegration for
F(O), a = 30. (NMC =R x NQMC-)
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Effect of o scaling

Figure: cdf (top) and pdf (bottom) for o = 1 (left), 15 (middle) and 30
(right).

18/19



Conclusion

Summary

» Developed a QMC & preintegration algorithm to approximate
cdf/pdf of Qol from lognormal PDE in UQ.

» Preintegration smooths the discontinuity from the indicator
function and QMC methods tackle the curse of dimensionality.

» Error analysis gives O(N~!79), which is observed in practice.
Extensions

» Approximate probability at multiple points {t;}, then reconstruct
the cdf, e.g., using polynomial interpolation, splines, etc.

» By formulating the density as an integral of a Dirac ¢ function,
we can also approximate the pdf.

» 5s=00
» Other UQ problems?
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Thanks for listening!



Reconciling preintegration and QMC theories
QMC — weighted ANOVA space W:

oy, = 3 /
Yu u|

uC{1:d}

ol 2
/]Rd—lul 8yu9(y)P(y{1:d}\u) dyapa| YY) dy,

Preintegration — Sobolev space of dominating mixed smoothness #:

2

alul
)| Y (Y)P(Yan) dy

71, =
171, = gt

uC{1:d} T

Theorem (G., Kuo, Sloan 2022)

T O(t)(1 - 2(t))
Suppose /_OO T dt < o0

Then the spaces W, and H, are equivalent, with

lglbw, < llgll, < Csxllglws,

where C, o, < oo depends on s, v and the reproducing kernel in W;. )
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Recap of assumptions
Assume t € R is fixed.
For s > 2, let ¢ : R?***1 — R satisfy
1. %(ﬁ(y) > 0 for all y € R?s+1:
2. for each y € R**!, ¢(y) — oo as yp — oo; and
3. ¢ € HY N C¥(RY), where v = (s — 1,1,...,1) € N*,
Additionally, suppose that p € C*(R).
For the equivalence and QMC theory assume that ¢ and ® (cdf of p)

satisfy
/°° O(t)(1 — (1))
—0 »(t)

dt < oc.

Also, define
U= {y1:25 S R2S : ¢<y07 yl:Zs) =t for some Yo € R}?
then define £ : U — R such that

¢(§(y1:23)a y1:2s) =1t.
(Both U and ¢ depend on t)
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*technical conditions*
Let ¢ € {0,1} and for all n € {0,1}?* consider functions

hq?n

¢

\

: U — R of the form

By (Yg) = (=) PP (£ (y2.0)) [[r—1 0% ¢(€(Y1:25), Y1:25)
Gl [81¢(€(y1:25)7y1:28)] +e 7

with 7 € Ny, o = (a)}_;, ap € Ng¥\{e1,0}, 8 € Ny satisfying

r
T§2|T’|+q_17 5€0+Za£:(r+q—1ﬂ7)-
/=1

We assume that all such functions hg 4, satisfy

hrgaU hgn(Y1.2s) = 0,

Y1:2s

and there is a constant B, such that

2s 2s
/U|hqm(ylzzs)|2 ( H %ZJ(Z/J‘)) ( H P(Z/j)) dyy.95 < Byn < 00
j=1 J=1

7570 n;=0
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