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The Wishart distribution

Let

I n, p ∈ N,

I Γ = (γi ,j)1≤i≤p,1≤j≤n be i.i.d. standard Gaussian random
variables,

I S+(Rp) = {A ∈ Rp×p : A is positive semi-definite},
I S++(Rp) = {A ∈ Rp×p : A is positive definite}.

Let X be the S+(Rp)-valued random variable given by

X = ΓΓT,

then1 X ∼Wishartp(n) (‘X had a Wishart distribution with n
degrees of freedom’). Generalizations:

X = (
√
QΓ + A)(

√
QΓ + A)T

with Q ∈ S+(Rp), A ∈ Rp×n: X ∼Wishartp(n,Q,A).

1The Wishart distribution was introduced in 1928 by John Wishart
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The Wishart distribution

I Let X ∼Wishartp(n). If n ≥ p then X ∈ S++(Rp) a.s. and X
allows for a density on S++(Rp).

I The Laplace transform S+(Rp) 3 u 7→ E(e− tr(uX )) can be
given explicitely.

I The Wishart distribution is used in e.g. multidimensional
(Bayesian) statistical analysis and random matrix theory.
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The Wishart process

Let

I A ∈ Rp×p,

I Y0,Q ∈ S++(Rp),

I W : [0,∞)× Ω→ Rp×n a standard Brownian motion,

and let Y : [0,∞)× Ω→ Rp×n be the Ornstein-Uhlenbeck process
satisfying

dYt = AYt dt +
√

Q dWt , t ≥ 0,

i.e., Yt = etAY0 +
∫ t
0 e(t−s)A

√
Q dWs .

Set

Xt = YtY
T
t , t ≥ 0.

Then Xt has a Wishart distribution for all t > 0. We call (Xt)t≥0 a
Wishart process.
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The Wishart process

Theorem (Bru, 1989)

Let (Xt)t≥0 be the Wishart process introduced above and n ≥ p.
Then there exists an Rp×p-standard Brownian motion (Bt)t≥0
such that

dXt = (nQ +AXt +XtA
T) dt +

√
Q dBtXt +Xt dB

T
t

√
Q, t ≥ 0.

Proof.

Apply Itô formula to YtY
T
t . Show that martingale part of dYtY

T
t

is equal in distribution to
√
Q dBtXt + Xt dB

T
t

√
Q.
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The Wishart process

Theorem (Bru, 1991)

If α ∈ N ∪ (p − 1,∞) and rank(X0) ≤ α then there exists a unique
S+(Rp)-valued (weak) solution to

dXt = αQ + AXt + XtA
T dt

√
Q dBtXt + Xt dB

T
t

√
Q, t ≥ 0.

(Wisp)

Moreover,

I the Laplace transform of Xt , t ≥ 0, can be given explicitely
and coincides with a Wishart distribution when α ∈ N;

I the eigenvalues and -vectors of Xt , t ≥ 0, solve a system of
SDEs that can be given explicitely.

Theorem (Cuchiero, Filipovic, Mayerhofer, Teichman: 2011)

If a (weak) solution to (Wisp) exists for all X0 ∈ S++(Rp) then
α > p − 1.
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Infinite dimensional Wishart processes: why?

Infinite-dimensional stochastic processes call for
infinite-dimensional covariance models.

E.g.: models in financial/energy/commodity markets, i.e., models
describing, for every t0 ≤ t ≤ t1, the expected cost of buying 1
euro/kWh/kg of silver, given the information at time t0.
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Samples of the forward rate curve ft for different values of t

Image source: http://crazyquant.blogspot.com/2012/10/hjm-model.html
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Question: can we construct infinite-dimensional Wishart processes?

Recall:

Theorem (Bru, 1991)

If α ∈ N ∪ (p − 1,∞) and rank(X0) ≤ α then there exists a unique
S+(Rp)-valued (stoch. weak) solution to

dXt = αQ + AXt + XtA
T dt

√
Q dBtXt + Xt dB

T
t

√
Q, t ≥ 0.

(Wisp)

Theorem (Cuchiero, Filipovic, Mayerhofer, Teichman: 2011)

If a (weak) solution to (Wisp) exists for all X0 ∈ S++(Rp) then
α > p − 1.
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Some notation

I (H, 〈·, ·〉H , ‖·‖H) a separable real Hilbert space,

I L1(H) the space of trace-class operators on H,

I L2(H) the space of Hilbert-Schmidt operators on H,

I S(H) = {A ∈ L(H) : A∗ = A},
I S+(H) = {A ∈ S(H) : A ≥ 0},
I S1(H) = S(H) ∩ L1(H),

I S+
1 (H) = S+(H) ∩ L1(H).
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Infinite-dimensional Wishart processes: an example
Benth and Simonsen (2018) consider an ‘infinite-dimensional
Heston model’:

the stochastic covariance is modelled by Xt := Yt ⊗Yt , where Y is
an H-valued Ornstein-Uhlenbeck process:

dYt = AYt dt +
√
QdWt ,

with
I A : D(A) ⊆ H → H is the generator of a C0-semigroup,
I W is a H-cylindrical Brownian motion,
I Q ∈ S+

1 (H).

Note: Xt ∈ S+
1 (H) a.s.

Indeed, Benth and Simonsen calculate the Laplace transform

S+
1 (H) 3 u 7→ Ee−〈uYt ,Yt〉H .

This Laplace transform is analogous to that of a Wishart
distribution with 1 degree of freedom.
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Theorem (C., Cuchiero, Khedher (2023))

Assume

I A : D(A) ⊆ H → H generator of a C0-semigroup (etA)t≥0,

I Q ∈ S+(H) such that
∫ t
0 ‖Qe

sA‖L2(H) ds <∞ for all t > 0,

I n ∈ N and X0 ∈ S(H) with rank(X0) ≤ n.

Then there exists a L2(H)-cylindrical Brownian motion W and an
adapted stochastic process X : [0,∞)× Ω→ S+

1 (H) such that
∀g , h ∈ D(A∗),∀t > 0:

d〈Xtg , h〉H = (n〈Qg , h〉H + 〈A∗g ,Xth〉H + 〈Xtg ,A
∗h〉H) dt

+ 〈
√
X t dWt

√
Qg , h〉H + 〈

√
Q dW ∗

t

√
X tg , h〉H .

(Wis∞)

Moreover, this process is unique in law.
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Existence.

Let Y : [0,∞)× Ω→ L(Rn,H) satisfy Y0Y
∗
0 = X0 and

Yt = etAY0 +

∫ t

0
e(t−s)A

√
Q dW̃s

where W̃ is an L2(Rn,H)-cylindrical Brownian motion. Then there
exists an L2(H)-cylindrical motion W such that

X = YY ∗

satisfies ∀g , h ∈ D(A),∀t ≥ 0:

d〈Xtg , h〉H = (n〈Qg , h〉H + 〈A∗g ,Xth〉H + 〈Xtg ,A
∗h〉H) dt

+ 〈
√
X t dWt

√
Qg , h〉H + 〈

√
Q dW ∗

t

√
X tg , h〉H .
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Remark regarding existence

Let
W̃ (i) = W̃ ei , i ∈ {1, . . . , n},

where ei is the i th unit vector in Rn

(recall: W̃ is an L2(Rn,H)-cylindrical Brownian motion).
Note: W̃ (1), . . . , W̃ (n) are independent H-cylindrical Brownian
motions.

Let Y (1), . . . ,Y (n) : [0,∞)× Ω→ H satisfy

Y
(i)
t = etAY0ei +

∫ t

0
e(t−s)A

√
QdW

(i)
s , t ≥ 0.

Then

Xt =
n∑

i=1

Y
(i)
t ⊗ Y

(i)
t , t ≥ 0.
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Uniqueness in law.

Suppose (Xt)t≥0 satisfies (Wis∞). Fix t > 0, u ∈ S+(H),
v ∈ S(H). By applying Itô’s formula to

Φ(s,Xs) = exp

(
− tr(ψ(t − s, u − iv)Xs)− n

∫ t−s

0

tr(ψ(r , u − iv)Q)dr

)
where ψ : [0, t]× L(HC)→ L(HC) is an unknown function, we
obtain that if ψ satisfies (Ricc) below then

E(e− tr((u−iv)Xt)) = exp(− tr(ψ(t, u − iv)x0)− φ(t − s, u − iv))


∂
∂t
ψ(t, u − iv) = A∗ψ(t, u − iv) + ψ(t, u − iv)A

− 1
2
(ψ(t, u − iv) + ψT (t, u − iv))Q(ψ(t, u − iv) + ψT (t, u − iv)), t ∈ [0,∞);

ψ(0, u − iv) = u − iv .
(Ricc)
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Remarks Laplace transform

I As X is a analytically weak solution and (Ricc) typically does
not allow for a strong solution some nasty approximation
arguments are needed.

I We obtain an expression for E(e− tr((u−iv)Xt)) in each of the
following situations
I u ∈ S+(H), v = 0;
I u = 0, v ∈ S+(H) or −v ∈ S+(H);
I u ∈ S+(H) and v ∈ S(H) sufficiently small.

I We can replace n ∈ N by α ∈ R.
I Concrete example: for u ∈ S+(H) we get

E[exp(− tr(uXt) | x0]

= det(IH + 2Qt,u)−
n
2 exp

(
− tr

(
etA

∗√
u(IH +2Qt,u)−1√uetAx0

))
,

with Qt,u =
√
u
∫ t

0
esAQesA

∗
ds
√
u.
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Theorem (C., Cuchiero, Khedher (2023))

Assume

I A : D(A) ⊆ H → H generator of a C0-semigroup (etA)t≥0 and
etA is injective for some t > 0,

I Q ∈ S+(H) is injective and
∫ t
0 ‖Qe

sA‖L2(H) ds <∞ for all
t > 0,

I α ∈ R,

I W is an L2(H)-cylindrical Brownian motion W ,

I X : [0,∞)× Ω→ S+
1 (H) such that ∀g , h ∈ D(A∗), ∀t ≥ 0:

d〈Xtg , h〉H = (n〈Qg , h〉H + 〈A∗g ,Xth〉H + 〈Xtg ,A
∗h〉H) dt

+ 〈
√
X t dWt

√
Qg , h〉H + 〈

√
Q dW ∗

t

√
X tg , h〉H .

(Wis∞)

Then α ∈ N and rank(X0) ≤ α. Moreover, rank(Xt) = α a.s. for
almost all t ≥ 0.
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Proof.

Graczyk, Malecki, and Mayerhofer (2018), Letac and Massam
(2018), and Mayerhofer (2019) provide a characterization of finite
dimensional Wishart processes via its Laplace transform.

This ensures α ∈ N.

To see that rank(Xt) = α a.s. for almost all t ≥ 0 we adapt the
proof of CFMT (2012) (this requires an extremely technical
approximation result).
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Conclusions

I Infinite-dimensional Wishart processes exist,

but it seems they
are necessarily of finite (fixed) rank.

I Both the characteristic function and the Laplace transform of
infinite-dimensional Wishart processes can be given explicitely.

I Infinite-dimensional Wishart processes are Feller with respect
to (a minor refinement of) the weak∗-topology.
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Some advertisement: a pure jump model

A tractable covariance model that can be of infinite rank:

C., Karbach, and Khedher (2022) establish existence of a process
X : [0,∞)× Ω→ S+

2 (H) satisfying

dXt = (b + BXt) dt + dJXt ,

where

I b ∈ S+(H);

I B ∈ L(L2(H));

I JX a pure jump process whose compensator ν is an affine
function of X ; i.e., ν(x , dξ) = m(dξ) + 〈µ(dξ)‖ξ‖2 , x〉, with

m : B(S+(H))→ [0,∞] and µ : B(S+(H))→ S+(H),

provided b, B, m, and µ satisfy some admissibility conditions.
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Open questions and outlook

I Work in progress: equations for the eigenvalues and -vectors
of infinite-dimensional Wishart processes (global existence?).

I Are there Wishart processes that are not of finite rank? (e.g.
if Q is not injective)?

I Are there other ‘nice’ (tractable) stochastic processes taking
values in S+

1 (H) (preferably not of finite rank)?
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