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Model problem

Let H be a separable Hilbert space (e.g. H = L?(D)), T > 0 and consider the H-valued 1t6-SDE

dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), t€[0,T], X(0)= Xo. (SPDE)
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dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), t€[0,T], X(0)= Xo. (SPDE)

® A:D(A) C H— H is adensely defined, self-adjoint, linear operator. Further, A generates
an analytic semigroup (S(t) = e“*,t > 0) C L(H) and is boundedly invertible.
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Let H be a separable Hilbert space (e.g. H = L?(D)), T > 0 and consider the H-valued 1t6-SDE

dX(t) = [AX(t) + F(X(t))]dt + G(X(t))dW(t), t€[0,T], X(0)= Xo. (SPDE)

® A:D(A) C H— H is adensely defined, self-adjoint, linear operator. Further, A generates
an analytic semigroup (S(t) = e“*,t > 0) C L(H) and is boundedly invertible.

® F: H — H is a (Lipschitz) non-linearity.

® W :Qx[0,T] — H is a Q-Wiener process with trace class covariance operator Q € £ (H).
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an analytic semigroup (S(t) = e“*,t > 0) C L(H) and is boundedly invertible.
® F: H — H is a (Lipschitz) non-linearity.
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® G: H — Lys(H; H) is Lipschitz, where H := Q/2H is the RKHS associated to W.
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Let H be a separable Hilbert space (e.g. H = L?(D)), T > 0 and consider the H-valued 1t6-SDE

dX(t) = [AX(t) + F(X(t))]dt + G(X (t))dW (t), t€[0,T], X(0) = Xo. (SPDE)
® A:D(A) C H— H is adensely defined, self-adjoint, linear operator. Further, A generates
an analytic semigroup (S(t) = e“*,t > 0) C L(H) and is boundedly invertible.
® F: H — H is a (Lipschitz) non-linearity.
® W :Qx[0,T] — H is a Q-Wiener process with trace class covariance operator Q € £ (H).
® G: H — Lys(H; H) is Lipschitz, where H := Q/2H is the RKHS associated to W.
Xo € L?(Q; H).
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Model problem

Let H be a separable Hilbert space (e.g. H = L?(D)), T > 0 and consider the H-valued 1t6-SDE

dX(t) = [AX(t) + F(X(t))]dt + G(X (t))dW (t), t€[0,T], X(0) = Xo. (SPDE)
® A:D(A) C H— H is adensely defined, self-adjoint, linear operator. Further, A generates
an analytic semigroup (S(t) = e“*,t > 0) C L(H) and is boundedly invertible.
® F: H — H is a (Lipschitz) non-linearity.
® W :Qx[0,T] — H is a Q-Wiener process with trace class covariance operator Q € £ (H).
® G: H — Lys(H; H) is Lipschitz, where H := Q/2H is the RKHS associated to W.
Xo € L?(Q; H).

There is a unique mild solution X : @ x [0,T] — H to (SPDE), given by
X(t) = S(t)Xo +/ St —s)F(X(s))ds+ / St — s)G(X(s))dW(s), te€[0,T].

Under mild assumptions: X (t) € L?(Q; H*) for some a > 0, t € [0, T] and H := D((—A)*/?).
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Pathwise approximations

® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator Ax : Vn — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.
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Pathwise approximations

® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator An : Vv — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.

® Noise approximation: Let (ex, k € N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loéve expansion to approximate W via

W (t) = Wi(t) := > (W(t),ex)mer, K EN.

k=1
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® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator An : Vv — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.

® Noise approximation: Let (ex, k € N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loéve expansion to approximate W via

W (t) = Wi(t) := > (W(t),ex)mer, K EN.

k=1

® Time stepping: Use M € N time steps and a rational approximation r(AtAn) = Sn(At)
for At = T/a. For the non-linear part:
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® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator An : Vv — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.

® Noise approximation: Let (ex, k € N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loéve expansion to approximate W via
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® Time stepping: Use M € N time steps and a rational approximation r(AtAn) = Sn(At)
for At = T/a. For the non-linear part:

— Euler-Maruyama scheme: Slow variance decay of order O(M 1) ...
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Pathwise approximations

® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator An : Vv — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.

® Noise approximation: Let (ex, k € N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loéve expansion to approximate W via

K
W (t) = Wi(t) := > (W(t),ex)mer, K EN.
k=1
® Time stepping: Use M € N time steps and a rational approximation r(AtAn) = Sn(At)
for At = T/a. For the non-linear part:

— Euler-Maruyama scheme: Slow variance decay of order O(M 1) ...
— Milstein scheme: Requires to simulate infinite-dim. iterated integrals, which is
expensive/infeasible ...
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Pathwise approximations

® Spatial approximation: Replace H by a discrete subspace Vx with dim(Vy) = N € N and
let Py : H — Vi be the ONP onto V. The discrete operator An : Vv — Vi generates a
semigroup Sy = (Sn(t),t > 0) on V.

® Noise approximation: Let (ex, k € N) denote the (orthonormal) eigenbasis of Q. We use a
truncated Karhunen-Loéve expansion to approximate W via

W (t) = Wi(t) := > (W(t),ex)mer, K EN.

k=1
® Time stepping: Use M € N time steps and a rational approximation r(AtAn) = Sn(At)
for At = T/a. For the non-linear part:

— Euler-Maruyama scheme: Slow variance decay of order O(M 1) ...
— Milstein scheme: Requires to simulate infinite-dim. iterated integrals, which is
expensive/infeasible ...

=- Extend the antithetic MLMC-Milstein scheme of Giles and Szpruch (2014) for SDEs to
infinite dimensions.
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Truncated Milstein scheme

From now on, assume F = 0. For fixed M, N, K, the truncated Milstein iteration reads
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From now on, assume F = 0. For fixed M, N, K, the truncated Milstein iteration reads

Yo = r(AtAN)PNY,Y K + r(AtAN) PNG (YN 5) A Wi
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Truncated Milstein scheme

From now on, assume F = 0. For fixed M, N, K, the truncated Milstein iteration reads

Yo = r(AtAN)PNY,Y K + r(AtAN) PNG (YN 5) A Wi
K
r(AtAN)P,
% Z G/(Y,fy’K) (PNG()/::I’K)\/Eel) \Y4 Nk€k (A’Inwk:Avnwl - 5k,lAt)-
k,l=1

We have used wg(-) := (W (-), ex)u, Where (e, k € N) denote the eigenfunctions of Q with
corresponding eigenvalues (1., k € N) C Rx¢ in decaying order.
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Truncated Milstein scheme

From now on, assume F = 0. For fixed M, N, K, the truncated Milstein iteration reads

Yo = r(AtAN)PNY,Y K + r(AtAN) PNG (YN 5) A Wi

r(AtAn)P, -
+ # Z G/(YN’K) (PNG(YN’K)\/EEI) vV Nk€Ek (Amkamwl — 5k,lAt)-

2 m m
k=1

We have used wg(-) := (W (-), ex)u, Where (e, k € N) denote the eigenfunctions of Q with
corresponding eigenvalues (1., k € N) C Rx¢ in decaying order.

We introduce G : H — Lys(Lys(H); H) and the £, (H)-valued increment

K
A Wik = AWk @ A, Wk — At Z Nk €r @ €.

k=1
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Truncated Milstein scheme

From now on, assume F = 0. For fixed M, N, K, the truncated Milstein iteration reads

Yo = r(AtAN)PNY,Y K + r(AtAN) PNG (YN 5) A Wi

r(AtAn)P, -
+ # Z G/(YN’K) (PNG(YN’K)\/EEI) vV Nk€Ek (Amkamwl — 5k,lAt)-

2 m m
k=1

We have used wg(-) := (W (-), ex)u, Where (e, k € N) denote the eigenfunctions of Q with
corresponding eigenvalues (1., k € N) C Rx¢ in decaying order.

We introduce G : H — Lys(Lys(H); H) and the £, (H)-valued increment

K
A Wik = AWk @ A, Wk — At Z Nk €r @ €.

k=1

trunc. Mistein YK = r(AtAN) PN (YK + GV ) A Wi + GV F) AW i) -
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Antithetic coupling |

Fix M, N, K € N and let the coarse scale discretization be given by

Y, =7(AtAN)PN (Y + GV AWk + G(Y,2) AW k), m=0,...,M—1.
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Antithetic coupling |

Fix M, N, K € N and let the coarse scale discretization be given by

Y, =7(AtAN)PN (Y + GV AWk + G(Y,2) AW k), m=0,...,M—1.

Fine scale: Let 6t := At/2 and denote for m = 0,1/2,1,..., M — 1/2, M, the corresonding "fine
increments” 6., Wx and 6,, Wy, k, so that A, Wk = dpp41/2Wk + 0 Wk.
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Fix M, N, K € N and let the coarse scale discretization be given by
Y, =7(AtAN)PN (Y + GV AWk + G(Y,2) AW k), m=0,...,M—1.

Fine scale: Let 6t := At/2 and denote for m = 0,1/2,1,..., M — 1/2, M, the corresonding "fine
increments” 6., Wx and 6,, Wy, k, so that A, Wk = dpp41/2Wk + 0 Wk.

The fine discretization with 2M time steps and Ny > N, Ky > K is then given by
Y112 = r(AtAN,) Py, (Y + G(Y]) +6(v1) )

Y7£+1 = T(AtANf)PNf (Y1£+1/2 + G(Yi+1/2)5m+1/2WKf + g(Y77fz+1/2)6m+1/2Wmst) .
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Antithetic coupling |

Fix M, N, K € N and let the coarse scale discretization be given by

Y, =7(AtAN)PN (Y + GV AWk + G(Y,2) AW k), m=0,...,M—1.

Fine scale: Let 6t := At/2 and denote for m = 0,1/2,1,..., M — 1/2, M, the corresonding "fine
increments” 6., Wx and 6,, Wy, k, so that A, Wk = dpp41/2Wk + 0 Wk.

The fine discretization with 2M time steps and Ny > N, Ky > K is then given by
Y. ., =7(AtAN,) PN, (Y 4+ G(Y]) +6(Y)) )

Y1£+1 = T(AtANf)PNf (Ym+1/2 + G( +1/2)6m+1/2WKf + g( +1/2)5m+1/2Wm Kf) .

The antithetic counter part of the fine discretization is

Y1 = r(AtAN)Pr, (Y2 + G(Y,2)0mi1/2Wi; + G(Y,2)0mi1/2Wimks ) »
ng:.—‘,-l = T(AtANj‘)PNf (Ya+1/2 +G(Y, +1/2) +4(Y, +1/2) ) .
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Antithetic coupling Il

We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.
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Antithetic coupling Il

We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.
Rather than using ¥ (Y;,) on the fine levels of the MLMC estimator, we use the antithetic average

BRI AR 105

Wy
M 2
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We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.

Rather than using ¥ (Y;,) on the fine levels of the MLMC estimator, we use the antithetic average

BRI AR 105

Wy
M 2

Forany ¥ € C2(H;R) it holds that that
® E(T,) =E(¥(Yy,)), (noadditional bias)
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Antithetic coupling Il

We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.

Rather than using ¥ (Y;,) on the fine levels of the MLMC estimator, we use the antithetic average

BRI AR 105

Wy
M 2

Forany ¥ € C2(H;R) it holds that that
® E(T,) =E(¥(Yy,)), (noadditional bias)

° E (‘@M - \II(X(T))]2> < C (M~ 4 N—2x 4 K~27), (strong error preserved)
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We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.

Rather than using ¥ (Y;,) on the fine levels of the MLMC estimator, we use the antithetic average
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Forany ¥ € C2(H;R) it holds that that
® E(T,) =E(¥(Yy,)), (noadditional bias)

° E (‘@M - lIl(X(T))]z) < C (M~ 4 N—2x 4 K~27), (strong error preserved)

o For Vo := Y8 there holds <\$M - \II(YA‘;[)|2> < CE (H?M - YMHZ>
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Antithetic coupling Il

We aim to estimate E (¥ (X (T'))) for ¥ € CZ(H;R) with MLMC.

Rather than using ¥ (Y;,) on the fine levels of the MLMC estimator, we use the antithetic average

BRI AR 105

Wy
M 2

Forany ¥ € C2(H;R) it holds that that
® E(T,) =E(¥(Yy,)), (noadditional bias)

° E <‘$M - lIl(X(T))]2> < C (M~ 4 N—2x 4 K~27), (strong error preserved)

o For Vo := Y8 there holds <\$M - \II(YA‘;[)|2> < CE (H?M - YMHZ>

= "Antithetic variances" decay faster than O(M~1).
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Improved variance decay for antithetic coupling in SPDEs

ML corrections: E (IEM - ‘I’(YAC/I)‘2> < CE (H?M - Y&HZ) :
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Improved variance decay for antithetic coupling in SPDEs

ML corrections: E (’EM - ‘I’(YAC/,)‘;)) < CE (H?M - YA‘ZHZ) :

Theorem (A.L. Haji-Ali and A.S., 2023)

Let supyepo,r X (t) € L° (€ H) hold for some a > 1, and let M, Ny, N, K;, K € N be such that
Ny > N and Ky > K. Under suitable assumptions on F, G, X, and Q, there is a constant C > 0,
independent of M, N, and K, such that the corrections in the antithetic Milstein scheme satisfy

e (¥ — Y3l}) < € (-mine® 4 N-200 4 -28)
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Improved variance decay for antithetic coupling in SPDEs

ML corrections: E (’EM - ‘I’(YAC/,)‘;)) < CE (H?M - YI\C/IHZ) :

Theorem (A.L. Haji-Ali and A.S., 2023)

Let supyepo,r X (t) € L° (€ H) hold for some a > 1, and let M, Ny, N, K;, K € N be such that
Ny > N and Ky > K. Under suitable assumptions on F, G, X, and Q, there is a constant C > 0,
independent of M, N, and K, such that the corrections in the antithetic Milstein scheme satisfy

e (¥ — Y3l}) < € (-mine® 4 N-200 4 -28)

® Recall that for the Euler/truncated Milstein scheme without antithetic correction, we have

E(vd - Yil) <€ (M 4 N2 4 k2).
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Improved variance decay for antithetic coupling in SPDEs

ML corrections: E (’EM - ‘I’(YAC/,)‘;)) < CE (H?M - YI\C/IHZ) :

Theorem (A.L. Haji-Ali and A.S., 2023)

Let supyepo,r X (t) € L° (€ H) hold for some a > 1, and let M, Ny, N, K;, K € N be such that
Ny > N and Ky > K. Under suitable assumptions on F, G, X, and Q, there is a constant C > 0,
independent of M, N, and K, such that the corrections in the antithetic Milstein scheme satisfy

e (¥ — Y3l}) < € (-mine® 4 N-200 4 -28)

® Recall that for the Euler/truncated Milstein scheme without antithetic correction, we have
E (HY]& - YA;HZ) < C (M~ 4 N~220 4 K=20),

® Error balancing via N & M™n(*2/2x0 gnd K ~ M™"(*2)/26 on all levels.
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Theorem (A.L. Haji-Ali and A.S., 2023)
Let ¥ € C2(H;R), M, € N, and let M, := My2* for £ € No.
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® there are C > 0 and v = v(G) > 0 such that

"Cost of sampling ¥ »; on level £" < CMel+", Ve € No.
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Let ¥ € C2(H;R), My € N, and let M, := My2¢ for £ € No. Assume that
® there are C > 0 and v = v(G) > 0 such that

"Cost of sampling ¥ »; on level £" < CMeH“’, Ve € No.
® forany 6 € (0, 1) there is a constant C = C (¥, d) > 0 such that
[E(®(X(T))) — E(T(Y3 ™) | < CM; 072, ve € No.

Then, under suitable conditions, there exists for any e € (0,e~") an antithetic MLMC-Milstein
estimator E3"'(® ,r) such that
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Theorem (A.L. Haji-Ali and A.S., 2023)
Let ¥ € C2(H;R), My € N, and let M, := My2¢ for £ € No. Assume that
® there are C > 0 and v = v(G) > 0 such that

"Cost of sampling ¥ »; on level £" < CMe1+“’, Ve € No.
® forany 6 € (0, 1) there is a constant C = C (¥, d) > 0 such that
[E(®(X(T))) — E(T(Y3 ™) | < CM; 072, ve € No.

Then, under suitable conditions, there exists for any e € (0,e~") an antithetic MLMC-Milstein
estimator E3"'(® ,r) such that

e (| (@) - E@X @) < &
The computational complexity Cnr, to compute a realization of E3"(W ) is bounded by
Ce2, min(a,2) > 1+ v,
Cur < { Ce2|log(e)|?, min(a,2) =1+ ~,

_o_ 14~—min(c,2)

Ce 1= ] min(a,2) < 1+4.



Numerical example: Stochastic heat equation

® |letD =1[0,1]¢4,d € {1,2}, H := L?(D) and let A := A be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((An, frn), k € N) of (—A) are given in closed form.
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Numerical example: Stochastic heat equation

® |letD =1[0,1]¢4,d € {1,2}, H := L?(D) and let A := A be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((An, frn), k € N) of (—A) are given in closed form.

® W is a Q-Wiener process with operator Q@ = ((—A)~*°) for a smoothness parameter s > 0.
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Numerical example: Stochastic heat equation

® |letD =1[0,1]¢4,d € {1,2}, H := L?(D) and let A := A be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((An, frn), k € N) of (—A) are given in closed form.

® W is a Q-Wiener process with operator Q@ = ((—A)~*°) for a smoothness parameter s > 0.

® We consider the stochastic heat equation given by
dX(t) = AX(t)dt + G(X(t))dW (t), X(0) = Xo, (1)

for a random X, € L®(92; H?) and with diffusion coefficient G : H — Lys(#; H) given by

G)u:=> (v,e;)mejy1(us vliriei41)n + (1, ;) me;(u, /i), v € Hyu € H.

=1
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Numerical example: Stochastic heat equation

Let D = [0,1]¢,d € {1,2}, H := L?(D) and let A := A be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((An, fr), k € N) of (—A) are given in closed form.

® W is a Q-Wiener process with operator Q@ = ((—A)~*°) for a smoothness parameter s > 0.

® We consider the stochastic heat equation given by
dX(t) = AX(t)dt + G(X (t))dW (t), X(0) = Xo, (1)
for a random X, € L®(92; H?) and with diffusion coefficient G : H — Lys(#; H) given by
G)u:=> (v,e;)mejy1(us vliriei41)n + (1, ;) me;(u, /i), v € Hyu € H.
j=1
e |t holds that X (t) € L8(Q; H*) for a € [1, min(1 + s, 2)).
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Numerical example: Stochastic heat equation

® |letD =1[0,1]¢4,d € {1,2}, H := L?(D) and let A := A be the Laplace-operator with hom.
Dirichlet BCs. The eigenpairs ((An, fr), k € N) of (—A) are given in closed form.

® W is a Q-Wiener process with operator Q@ = ((—A)~*°) for a smoothness parameter s > 0.
® We consider the stochastic heat equation given by

dX (t) = AX(t)dt + G(X (t))dW (t), X (0) = Xo, (1)
for a random X, € L®(92; H?) and with diffusion coefficient G : H — Lys(#; H) given by
G)u:=> (v,e;)mejy1(us vliriei41)n + (1, ;) me;(u, /i), v € Hyu € H.

j=1

e |t holds that X (t) € L8(Q; H*) for a € [1, min(1 + s, 2)).

® We combine the antithetic Milstein scheme with a spectral Galerkin approach and truncated
Karhunen-Loéve expansions for W. All errors are balanced via ap = a«and g = ¢/a — 1/2.
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Conclusions and outlook

Summary:
® First infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs

Avoid simulation of iterated integrals

Significantly improved complexity (under certain conditions)
® |ncrease in efficiency depends on smoothness of the mild solution
® Performance depends on the cost of evaluating G and the decay of the EVs of Q
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Conclusions and outlook

Summary:
® First infinite-dimensional antithetic Milstein scheme for (parabolic) SPDEs

Avoid simulation of iterated integrals

Significantly improved complexity (under certain conditions)
® |ncrease in efficiency depends on smoothness of the mild solution
® Performance depends on the cost of evaluating G and the decay of the EVs of Q

Extensions:
® |nclude an (antithetic/improved) noise approximation
® SPDEs with Lévy noise (= BDG inequalities)
® First-order hyperbolic SPDEs (exploit weak formulation)

Tamed schemes for non-Lipschitz drift coefficients
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