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Stochastic Filtering in Biology

Living Cell

Applicability:
¢ to unravel cellular functions not fully understood
® inference purposes
® design feedback controllers
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Mean estimate to unobserved species
E(gX(0)|Y(s) = ¥(s), 0 <5< 1)
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Drawbacks of the current methods: Kalman Filter
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Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations
Kalman Filter (- -):
® |t requires linearity of the underlying model

* Not accurate at estimating low copy number regimes: the hidden process trajectory is not even
included in the standard deviation bandwidth
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Drawbacks of the current methods: Particle Filter (Rathinam, JCP 2021)
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Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations

Particle Filter (—-):

® Accurate at estimating summary statistics, but not probability distributions, in particular rare

events probabilities
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Need for New Filters for the Stochastic Reaction Networks Setting

Goal: Infer Hidden cellular states based on partial observations accurately
and efficiently

Current Issues: The existing methods fail due to non-linearity,
high-dimensionality, etc.

Our Solution: Provide with computational methods to compute the
conditional distribution very accurately and efficiently
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Filtering Problem Formulation in the Stochastic Reaction Networks Setting

® Consider an intracellular chemical reacting system that has n species (Si, ..., S,) and M

reactions: N .
STens B> €S, k=1,...M,
=1 i=1
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Filtering Problem Formulation in the Stochastic Reaction Networks Setting

® Consider an intracellular chemical reacting system that has n species (Si, ..., S,) and M

reactions: N N
Zgiksi Ly Zg;ksi, k=1,...M,
=1 i=1

® a1,as,...an the propensity functions and vy, £ &, — &, k = 1,..., M, the stoichiometry vectors

® Consider a CTMC Z(t) € Z%, associated with the reaction network
® We decompose the system into two sub-networks Z(t) = (X(t), Y (t)):
- X(t)ex C Zglo hidden species copy numbers

- Y(t) € ZL; (with nz = n — ny) observed species
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Filtering Problem Formulation in the Stochastic Reaction Networks Setting

® Consider an intracellular chemical reacting system that has n species (Si, ..., S,) and M

reactions: N N
Zgiksi Ly Zg;ksi, k=1,...M,
=1 i=1

® a1,as,...an the propensity functions and vy, £ &), — &, k= 1,..., M, the stoichiometry vectors

Consider a CTMC Z(t) € Z%, associated with the reaction network

® We decompose the system into two sub-networks Z(t) = (X(t), Y (t)):
- X(t) € & C ZZ}, hidden species copy numbers
- Y(t) € ZL; (W|th n2 = n — n1) observed species

® We can write the Chemical Master Equation (CME):

M

dp(t, z) n
0 :z;aj(z—uj)p(tz—uj tzZ z€eZ", t>0
= J=1
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Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

® We can define:
— n1 components to define v, and v}/ with the remaining n. components
- 0={i=1,..., M|/ #0}and O° =U
- Ok ={i € Olvi' = y(tx) —y(t;)},
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Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

® We can define:
— n1 components to define v, and v}/ with the remaining n. components
- 0={i=1,..., M|/ #0}and O° =U
- Ok ={i € Olvi' = y(tx) —y(t;)},
* Our goal is to compute 7 (¢, z) £ P{X(t) = z[Y(s) = y(s),0 < s < t} forany = € Z*}*, and for
te <t < lpta:

T(tw) =Y mltw = vh)ag (@ — v y(te) = 3wt @)a (2 y(te)

Jjeu Jjeu

’

—n(t,) (aO(x,ym)) -y a0<x’,y<tk»w<t,x’>> Vo e 27,

x

where a® (z, y(tr)) = D o a;(z, y(tr))-
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Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

® We can define:
— n1 components to define v, and v}/ with the remaining n. components
- 0={i=1,..., M|/ #0}and O° =U
- Ok ={i € Olvi' = y(tx) —y(t;)},

* Our goal is to compute 7 (¢, z) £ P{X(t) = z[Y(s) = y(s),0 < s < t} forany = € Z*}*, and for

te <t < tgta:

T(tw) =Y mltw = vh)ag (@ — v y(te) = 3wt @)a (2 y(te)

Jjeu Jjeu

’

—n(t,) (aO(x,ym)) -y a0<x’,y<tk»w<t,x’>> Vo e 27,

where a® (z, y(tr)) = D o a;(z, y(tr))-
o Atthe jumptimesty, k=1,...
Y co, @@ — v y(te—1)7(t, @ —v))

Zz/ Zle(’)k al(x/7 y(tk—l))ﬂ’(t;7 xl)
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Similarities with the CME and challenges inherent with the Filtering Equation

Methods for solving the CME :

* Finite State Projection (Munsky et al., 2006, J.
Chem. Phys.)

® MonteCarlo Methods (SSA, Next Reaction
Method) (Gillespie and Petzold J. Chem.
Phys. 2009, Anderson et al. J. Chem. Phys.
2006)

¢ Moment Closure Methods

® Machine Learning Algorithms (DeepCME)
(Gupta et al., PLOS CB, 2022)

® Hybrid Methods (Fang et al. 2022 bioRxiv, J
Hasenauer et al. J Math. Biol. 2014, Duso et
al. J. Chem. Phys. 2018)

'Elena Sofia D’Ambrosio et al. “Filtered finite state projection method for the analysis and
estimation of stochastic biochemical reaction networks”. In: bioRxiv (2022).
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Similarities with the CME and challenges inherent with the Filtering Equation

Methods for solving the CME : Methods for solving the filtering equation:

* Finite State Projection (Munsky et al., 2006, J. ® Filtered Finite State Projection (FFSP)

Chem. Phys.) (Completed work, D’Ambrosio et al. 2022,
. . 1

¢ MonteCarlo Methods (SSA, Next Reaction bioRxiv)
Method) (Gillespie and Petzold J. Chem. ® Particle Filtering Algorithms (Fang et al.
Phys. 2009, Anderson et al. J. Chem. Phys. SIAM 2023, Rathinam et al., J. Chem. Phys.
2006) 2021)

* Moment Closure Methods * Moment Closure Methods (Zechner et al.,

® Machine Learning Algorithms (DeepCME) CMSB 2022)
(Gupta et al., PLOS CB, 2022) ® Machine Learning (In Progress)

® Hybrid Methods (Fang et al. 2022 bioRxiv, J
Hasenauer et al. J Math. Biol. 2014, Duso et
al. J. Chem. Phys. 2018)

"D’Ambrosio et al., “Filtered finite state projection method for the analysis and estimation of
stochastic biochemical reaction networks”.
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How to address the challenges inherent with the filtering equation

Un-normalised

i i ¢ 7 it istribution
Nonlinearity: p(t,z) £ 7(t, z) exp (— fmax{tk\tkgt} [Ziez’;}) GO(I,Y(S))T{'(S,JJ)} ds) Distiute

the Zakai Equation

Fort, <t <tpy1and xz € Z™1:
A(ta) = plt.a=viay(a—viy(t)) =3 plt2)as (e, y(t) —p(t,2)a® (@, y(ts) Vo € Z]!
Jeu jeu
z:jeo,c+1 aj(@=v}, Y (t)p(t, , x—v))

D Djeop,, WEY Dol 2)

Fort =tx+1 and z € Z™1: p(tk+1, l’) =
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How to address the challenges inherent with the filtering equation

neart t ; . Ul
Nonlinearity: p(t,z) £ n(t, z) exp (— Soaxttnitnzn {Ziezglo ao(w,Y(s))w(s,m)} ds) me::ég;g%suaﬁon
Forty <t <tgsy1andx € Z™:
p(t,z) = E p(t, z—V})a; (-T—V]/':y(tk))_z p(t, x)aj(z, y(te))—p(t, ©)a® (z,y(tr)) Vo € zn
Jeu jeu
Z:jeo,pr1 aj(@—v, Y (te))p(ty, 2—v))

Fort =txs1 and x € Z™': p(tgt1,x) = - —
+ p(tky1, @) S ijk“ a; (&Y (tx)p(t; 1)

High dimensionality: prrsp (¢, XP) = (prrsp(t, 1), - . -, prrsp (t, ;cp))T finite-dimensional vector

.
.

éﬁ***j)ﬁf% Edddal Filtered Finite State Projection

& D4 . -

el . |:‘l> I | presp(t, Xp) = Ap(Y (tx))prrsp(t, Xp)
. % : | Vk € Zso and Vt € [ty trt1)
PP Hert o prrse (tkt1, Xp) = Apy, (Y (tk)) prrse (tp 1, Xp)

e ee
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Motivation: Real-Time Estimations of Cellular States

® FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed
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Motivation: Real-Time Estimations of Cellular States
® FFSP provides accurate estimations (benchmark for validation) but suffers from slow

computational speed
® Objective: Harness the computational power of ML for real-time estimations
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I.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023
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data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

— Reconstruction of the dynamics such that the hidden process becomes a controlled

process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

ETHziirich Sz MCM23 9120



Motivation: Real-Time Estimations of Cellular States

® FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

® Objective: Harness the computational power of ML for real-time estimations

® Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including
CME):

— Approximating the solution of the equation with the NN during the training by comparing
I.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

— Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

— Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

— Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023
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Extending the DeepCME approach to solve the noise-free filtering equation

® LetZ(t) € Z C Z%, be the state of a CTMC and Z(0) = zo
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Extending the DeepCME approach to solve the noise-free filtering equation

® LetZ(t) € Z C Z%, be the state of a CTMC and Z(0) = zo
¢ |n the DeepCME , the goal is to compute

E(9(Z() = > _ g(2)p(t, 2)
reEZ
where g is a suitable real-valued function, typically called output function.
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Extending the DeepCME approach to solve the noise-free filtering equation

® LetZ(t) € Z C Z%, be the state of a CTMC and Z(0) = zo
¢ |n the DeepCME , the goal is to compute

E(9(Z() = > _ g(2)p(t, 2)
reEZ
where g is a suitable real-valued function, typically called output function.

® Given the filtration generated by (Z(¢)).>0, we can define a martingale in the interval [0, T']:

Vo(t, Z(t)) = E(9(Z(T))|Z(1)), suchthat V(0 20) = E(9(Z(T)))
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Extending the DeepCME approach to solve the noise-free filtering equation

Let Z(t) € Z C Z%, be the state of a CTMC and Z(0) = zo
In the DeepCME , the goal is to compute

E(9(Z() = > _ g(2)p(t, 2)
reEZ
where g is a suitable real-valued function, typically called output function.

Given the filtration generated by (Z(t)):>0, we can define a martingale in the interval [0, T:

Vo(t, Z(t)) = E(9(Z(T))|Z(1)), suchthat V(0 20) = E(9(Z(T)))

V, satisfies this ‘almost sure’ relationship:

V, (T, Z(T)) :Vg(O,Z(O))JrZ/ ARV, (t, Z(£))dRy (t).
k=170

where for each reaction channel k = 1,..., M, A Vy(t, z) := Vy(t,z + vi) — Vy(t, ) and
Rult) = Vi ( I ak(X(s))ds) — [! an(X(s))ds

ETHzirich — Segsises== MCM23 10120



Extending the DeepCME approach to solve the noise-free filtering equation

® A deep neural network (DNN) approximates the following map for z € 2 C Z%, and ¢ > 0:

(t,2) = Vy(t, 2) = E(9(Z(T))|Z(?) = 2)
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® A deep neural network (DNN) approximates the following map for z € 2 C Z%, and ¢ > 0:
(t,2) = Vy(t, 2) = E(9(Z(T))|Z(?) = 2)
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Extending the DeepCME approach to solve the noise-free filtering equation

® A deep neural network (DNN) approximates the following map for z € 2 C Z%, and ¢ > 0:

(t,2) = Vy(t, 2) = E(9(Z(T))|Z(?) = 2)

The DNN is trained according to the ‘almost sure’ relationship

® Our setting: Z(t) = (X(t),Y(t)) € Z%,, where X(t) € ZZ], hidden process and Y (t) € Z%3
observed process B B

Our Goal: Compute E [¢(X(T))|Yr] by finding a martingale representation

How to achieve it:
— Define (V,w) and Mg,y 1 (t,V(t),w(t)) =E [g(V(T))w(T)\(V(t),w(t),y[OTT])} s.t.:

E [My,50,11(0, V(0), w(0))[yjo 7]
E [M,y(0 7, (0, V(0), w(0))[yjo, 7]
— Approximate Mgy, - (-) with @ DNN and train it with an "almost sure’ relationship

E [9(X(T))|ypo.r)] =

ETHzirich — Szegsisesrs== MCM23 11120



Definition of V and w over the whole time horizon (Rathinam et al. 2021)

® Under the non-explosivity condition, we can write V(¢) and w(t) over the whole time horizon as
the following:

ETHziirich

V() = Vo) + SR, ( [ <v<s>,y<s>>ds> YRS DY PN NE
0 = Jo

Jjeu

w(t) = w(o) exp{— | vy [ lnAM.(s)dRuk(s)},
0 =10
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Definition of V and w over the whole time horizon (Rathinam et al. 2021)

® Under the non-explosivity condition, we can write V(¢) and w(t) over the whole time horizon as

the following:

V() = Vo) + SR, ( [ <v<s>,y<s>>ds> YRS DY PN NE
0 = Jo

Jjeu

w(t) = w(o) exp{— | vy [ lnAM.(s)dRuk(s)},
0 =10

® where {s,, (t), A.,(t)},>, are two stochastic processes described for each ¢ > 0 and
k=1,...,m1 by the following joint probability distribution:

P (s (1), A (1) = (5, a5 (V(ET), y ()N (V(ET),y(t7)))
m if j € Opy (t7)

0 otherwise

being Oy, (t) = {j € Opy la; (V (1), y(t)) # 0}.
ETHziirich Sz MCM23
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Schematic Representation of V' and w

Z@1) = (X(®),Y(1) € Z%, X(1) € X C Z7 hidden species Y(1) € Z7; observed species
(V(1), w(n)) auxiliary processes V(1) € Z;'Omimicking the hidden dynamics w(?) € Ry,

2/(;0) Y(t 1). Y(iz)
03 V()

0 L v V()

V() .

tV<(t3 = V() + Z R; ([ a(V(s), Y(to))ds> YoV(t) = V(7)) + v

Py 0

1 =24 W(tl) = aj(V(tl_)’ Y(t()))w(tl_)

for je 0, = {j €01 =Y —Y(r;)}

w(ty) =1 with probability

10,1

w(t)

R De f Bi Sci
ETHzirich s Engincaning T Senee Kg(t{ )

MCM23
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Martingale Dynamics

Between the observation process jump times, ¢, <t < ty+1, My, , satisfies:

M0,y (8 V()0 (8) = Moy 2y (8 V0, w(t)) Y a5 (V(), y(te))dt

jeu
=) My 0y (6 V) + v, w)as (V(E), y(t))dt
jeu
+ Z 9:9[0,7] L V(ET) + ’/;7 w(t™)) — My yi0,1; (=, V(t), w(ti))} dR;(t)
JeEU

R Department of Biosystems Science
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Martingale Dynamics

Between the observation process jump times, ¢, <t < ty+1, My, , satisfies:

M0,y (8 V()0 (8) = Moy 2y (8 V0, w(t)) Y a5 (V(), y(te))dt

jeu
=) My 0y (6 V) + v, w)as (V(E), y(t))dt
jeu
+ Z 9:9[0,7] L V(ET) + ’/;7 w(t™)) — My yi0,1; (=, V(t), w(ti))} dR;(t)
JeEU

Then M,y -, satisfies the following dynamic backward equation for ¢ = ¢

My 0.1y (ti - V (8 w(t;)
1 _ _ _
=ooa 2 Meven (e V) + 154 (VE). yt)u(t)
HR T €6, ()
where ju = y(tx) — y(t; )
ETHzirich S MCM23

14/20



Neural Network Structure

[ Inputs: <{tk}ZeN < Tyt V@), w(t)) h<t<T ]

Goal: compute E [g(X(T))|y[0vTJ] for some bounded function g and 7 > 0

and for any given trajectory of Y(s) = y(s) 0 <s <7, namely y;

Encoder/Decoder E [ML’LV[UAT\(O’V(O)’ W(O) |Y[0,T]]
How : E [g(X(T)) ] =

E [M13,, 0.V ), w(0) 5101

v ¢ Hereg=(g1),whereg: Z;'o - RMand 1: Z”Z‘U — R constant one function

FFNN

Output:l
NNg, R My, (t V(r),w(t))=rE[g(V(T))w(T)\(V(t),w(r),ylo,n)]

Yo~ gV

ETHzirich — Segsises== MCM23 15120



Loss Function Definition

® Mgy, . satisfies between the observation process jump times ¢, <t < tx41 :

[0,T

Mgm‘/[o‘T] (t1:+17 V(tlz+1)7 w(t]:Jrl)) = Mgay[o,T] (tkz V(tk)7 w(tk))

t;+1 -
e [ Ay (R

teu Ytk

where A; f(t,v,w) = f(t,v + vj,w) — f(t,v, w) with f a bounded function in the domain of A;
for j € U and R;, for j € U, are the centered Poisson processes.

ETHzirich — Szegsisers== MCM23 16120



Loss Function Definition

® Mgy, . satisfies between the observation process jump times ¢, <t < tx41 :

M, 9>Y[0,T) (t;+1vv(t;+1)vw(t1;+1)) = Mg,y[o,T] (tr, V(te), w(tr))

s / Myyomy(5)F1(5)

leu

where A; f(t,v,w) = f(t,v + vj,w) — f(t,v, w) with f a bounded function in the domain of A;
for j € U and R;, for j € U, are the centered Poisson processes.

® Main Idea: Creating the loss function according to the martingale dynamics between the jumps
and adding the costraints at the jumps
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Loss Function Definition

® Mgy, . satisfies between the observation process jump times ¢, <t < tx41 :

M 9:Y[0,T] (t1:+17 V(tlz+1)7 w(t]:Jrl)) = Mgay[o,T] (tlﬁ V(tk)7 w(tk))

Y / My, ()R ()

leu

where A; f(t,v,w) = f(t,v + vj,w) — f(t,v, w) with f a bounded function in the domain of A;
for j € U and R;, for j € U, are the centered Poisson processes.

® Main Idea: Creating the loss function according to the martingale dynamics between the jumps,
and adding the costraints at the jumps

* |tis reasonable to think that the NN/

approximation of Mgy,

9,50, MINIMising the loss function should be a good

0 ~
NN(] Yo, 7] ~ Mgvy[O,T]
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Loss Function Definition

Loss(6) = [3’ NNy Viors Wiy y[(m)]

sy
y — — — ¥y
LONGy, o Vi WiorpYior) =] 2 | NNy (i} rn o1 fiens VD). WGG1)) = NN, \“,,,({tk}kwy[mtk,V(tk),W(aD—ZI ANNGy, ()R (s)

11 <T leu u

Evolution of the martingale until the last jump before T

T
+[s(VINHWT) — NN:»Hm({’k}ieNvylo,Tlv’Iasth(’Iast)vw(’last))—ZJ ANNLy, ()R (5)
€% “|gst

Evolution of the martingale between the last jump and T

+ 2 [Ny i o 0 VAD WD) = > NND 80 fi V) + 4 (VD Y6 )W)
1<T m( k )/6(7 L)

. Department of Blosystems § Evolution of the martingale at the jump times before T
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Loss Function Computation

* Training: Compute the loss function by sampling

9,Y10,1]°

Loss(9) = E [E [K(NNQ s Vio,1, Wio, 77, Yjo,7])

)

where )o.r is the filtration generated by the observation process fromtimet =0tot =1T.
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Loss Function Computation

* Training: Compute the loss function by sampling

Loss(6) = E [E [z:(NN" , Vio, 17, Wio, 17,

9:9[0,1]° OT])

)

where )o.r is the filtration generated by the observation process fromtimet =0tot =1T.

® How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

e Strategy: Monte-Carlo methods
— Fix a simulation of Y(¢) for 0 < ¢ < T, namely yjo, 1
— Sample ¢ different trajectories of the processes (V,w): (V',w!), (V3 w?)..., (VL w?)

- Compute L(NN?, V(o 1}, wio,r}, yjo,r]) for each sampled (V, w) and compute
E [L(NN®, Vio,r), wio,r), yjo,1)|Vorr] by 2374 LINN®, Vi s wiy 75 Yjo,17)
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Loss Function Computation

* Training: Compute the loss function by sampling
Loss(8) = E [E [K(NNgyO . V[o,T],w[o,pr[o,T])‘yo:TH

where )o.r is the filtration generated by the observation process fromtimet =0tot =1T.

® How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

e Strategy: Monte-Carlo methods
— Fix a simulation of Y(¢) for 0 < ¢ < T, namely yjo, 1

— Sample ¢ different trajectories of the processes (V,w): (V',w!), (V3 w?)..., (VL w?)

- Compute L(NN?, Vg 7}, wio,r), yjo, 7)) for each sampled (V,w) and compute
E [ﬁ(NN97 Vo, 1], Wio, 17, y[O,T])D)O:T} by % 23:1 ﬁ(NNg7 VfOVT], waYT]v Y(0,77)

— Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function
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Conclusion Remarks

® Stochastic Filtering is important to pave the way for real-time estimations of cellular states
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Conclusion Remarks

® Stochastic Filtering is important to pave the way for real-time estimations of cellular states

® We have developed a method which exploits the power of Machine Learning to tackle high
dimensional problems by extending the DeepCME

® The methods is versatile and does not need simulations for the prediction step
® |Implementation (in progress)

® The current DNN can only make predictions for observation process trajectories whose maximal
length cannot exceed the ones saw in the training

* Try to make predictions at intermediate times ¢t < T
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