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Outline of The Talk

1 The Euler Multilevel Monte Carlo scheme

2 / 37



Motivation
We are interested in approximating barrier option prices such as the

Down-and-Out (D-O) and the Up-and-Out (U-O) barrier options

πBD
= E

[
f (XT )1{inft∈[0,T ] Xt>BD}

]
and πBU

= E
[
f (XT )1{supt∈[0,T ] Xt<BU}

]
for a process (Xt)t∈[0,T ] solution to

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x , (1)

where (Wt)t≥0 is a s.B.M. b : R → R and σ : R → R∗
+ are loc.

Lipschitz-functions such that 1
σ is loc. integrable.

For ϕ(y) =
∫ y

y0
1

σ(x)dx , if σ ∈ C1 then by the Lamperti transform

Yt = ϕ(Xt) solves the stochastic differential equation

dYt = L(Xt)dt + dWt , Y0 = ϕ(x),

with L(x) =
(

b
σ − σ′

2

)
(ϕ−1(x)).

As the function ϕ is monotonic, we get πBD
= πD and πBU

= πU where

πD = E
[
g(YT )1{inft∈[0,T ] Yt>D}

]
, πU = E

[
g(YT )1{supt∈[0,T ] Yt<U}

]
,

g(x) = f ◦ ϕ−1(x), D = ϕ(BD) and U = ϕ(BU).
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General Framework

In the sequel, we consider the general setting given in [Alfonsi 2013]
and let (Yt)t≥0 denote the SDE defined on I = (0,+∞) solution to

dYt = L(Yt)dt + γdWt , t ≥ 0, Y0 = y ∈ I , with γ ∈ R∗, (2)

where L : I −→ R is C 2, s.t.

∃ κ > 0, ∀y , y ′ ∈ I , y ≤ y ′, L(y ′)− L(y) ≤ κ(y ′ − y). (3)

In addition, for an arbitrary point d ∈ I , we assume that

v(x) =

∫ x

d

∫ y

d

exp
(
− 2

γ2

∫ y

z

L(ξ)dξ
)
dzdy satisfies lim

x→0+
v(x) = +∞.

(H1)
By the Feller’s test (3) and (H1) ensure that the SDE (2) admits a

unique strong solution (Yt)t≥0 on (0,+∞).
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The drift implicit Euler scheme

For ti =
iT
n , 0 ≤ i ≤ n, we consider the drift implicit continuous

scheme introduced in [Alfonsi 2013] ,

Ŷ n
t = Ŷ n

ti + L(Ŷ n
t )(t − ti ) + γ(Wt −Wti ), t ∈ [ti , ti+1] (4)

Ŷ n
0 = y

is well defined and for all t ∈ [0,T ], Ŷ n
t ∈ I = (0,+∞).

If in addition we assume that for p ≥ 1, we have

E
[( ∫ T

0

|L′(Yu)L(Yu) +
γ2

2
L′′(Yu)|du

)p]
< ∞ and E

[( ∫ T

0

(L′(Yu))
2du
) p

2
]
< ∞,

(H2)

then by [Alfonsi 2013], there exists a positive constant Kp such that

E
1
p

[
sup

t∈[0,T ]

|Ŷ n
t − Yt |p

]
≤ Kp

T

n
.
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The interpolated drift implicit scheme for Brownian bridge

For our purpose, we rather focus on a slightly different interpolated
version. For ti =

iT
n , 0 ≤ i ≤ n, Y

n

ti+1
= Y

n

ti + L(Y
n

ti+1
)Tn + γ(Wti+1 −Wti ),

Y
n

0 = y .
(5)

and then introduce the following interpolated drift implicit scheme

Y
n

t = Y
n

ti + L(Y
n

ti+1
)(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1[. (6)

The main advantages of this Brownian interpolation is that it preserves
the rate of strong convergence of the original drift implicit scheme (4)
and allows an easy use of of the Brownian bridge technique for pricing
Barrier options.
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Strong convergence rate
For this aim, we strengthen our assumption on L as follows:

L : I → R is C2 such that: L is decreasing on (0,A) for A > 0,

and L′ satisfies ∃L′A > 0 s.t. ∀y ∈ (A,∞), |L′(y)| ≤ L′A. (H3)

Theorem 1

Assume that conditions (H2) and (H3) hold true for a given p > 1 and
with L′A < n

2T . Then, there exists a constant Kp > 0 such that

E
1
p

[
sup

t∈[0,T ]

|Y n

t − Yt |p
]
≤ Kp

T

n
.

Corollary 2

Under assumptions of Theorem 1, if in addition

∃α > 0 such that ∀ y ∈ I , yL(y) ≤ α(1 + |y |2) (H4)

then E[ sup
0≤t≤T

|Y n

t |p] < ∞.
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Brownian bridge and drift implicit scheme

The above barrier option prices can be approximated by

πD := E
[
g(Y

n
T )

n−1∏
i=0

1{inft∈[ti ,ti+1]
Y

n
t >D}

]
and πU := E

[
g(Y

n
T )

n−1∏
i=0

1{supt∈[ti ,ti+1]
Y

n
t <U}

]
.

To get more accurate approximations, we use the Brownian bridge
technique. For x ∈ R, (x)+ stands for max(x , 0).

Proposition 1

Under the above notation, for h = T
n , we have

πD = E
[
g(Y

n
T )

n−1∏
i=0

(1− qi )
]
, qi := exp

(−2(Y
n
ti
−D)+(Y

n
ti+1

−D)+

γ2h

)
and

πU = E
[
g(Y

n
T )

n−1∏
i=0

(1− pi )
]
, pi = exp

(−2(U − Y
n
ti
)+(U − Y

n
ti+1

)+

γ2h

)
.

The Brownian bridge technic goes back to [Baldi 1995] and [Gobet 2009]
for related refinements.
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The interpolated drift implicit Euler MLMC method

We consider the drift implicit scheme (Y
2ℓ

ti )0≤i≤2ℓ given in (5) using a
time step hℓ = 2−ℓT for ℓ ∈ {0, ..., L}, with L = log n/log 2, where n is
the finest time step number.

Let (Y
2ℓ

t )0≤t≤T denote the Brownian interpolation of the drift implicit
scheme defined in (6) with time step hℓ. For

Pℓ := g(Y
2ℓ

T )
2ℓ−1∏
i=0

1
{sup

t∈[tℓ
i
,tℓ
i+1

]
Y

2ℓ

t <U}
, where tℓi =

iT

2ℓ
for ℓ ∈ {0, ..., L},

(7)

we have

πU = E
[
PL

]
= E

[
P0

]
+

L∑
ℓ=1

E
[
Pℓ − Pℓ−1

]
, (8)

where πU := E
[
g(Y

n

T )
n−1∏
i=0

1{supt∈[ti ,ti+1]
Y

n
t<U}

]
.
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Brownian bridge for the MLMC method
Applying Proposition 1 yields

E
[
Pℓ

]
= E

[
P

f

ℓ

]
, where P

f

ℓ : = g(Y
2ℓ

T )
2ℓ−1∏
i=0

(1− p2
ℓ

i ) with (9)

p2
ℓ

i = exp
(−2(U − Y

2ℓ

tℓi
)+(U − Y

2ℓ

tℓi+1
)+

γ2hℓ

)
.

Now, following the conditional MC proposed by [Giles et al. 2019] we
get

E
[
Pℓ−1

]
= E

[
g(Y

2ℓ−1

T )

2ℓ−1−1∏
i=0

E
[
1
{sup

t∈[t
ℓ−1
i

,t
ℓ−1
i+1

]
Y

2ℓ−1

t <U}
|Y 2ℓ−1

tℓ−1
i

,Y
2ℓ−1

tℓ2i+1
,Y

2ℓ−1

tℓ−1
i+1

]]
=

E
[
g(Y

2ℓ−1

T )

2ℓ−1−1∏
i=0

E
[
1
{sup

t∈[t
ℓ−1
i

,tℓ
2i+1

]
Y

2ℓ−1

t <U}
1
{sup

t∈[tℓ
2i+1

,t
ℓ−1
i+1

]
Y

2ℓ−1

t <U}
|Y 2ℓ−1

tℓ−1
i

,Y
2ℓ−1

tℓ2i+1
,Y

2ℓ−1

tℓ−1
i+1

]]
,

where the coarse scheme Y
2ℓ−1

tℓ2i+1
is computed using our Brownian

interpolation scheme (6) that is

Y
2ℓ−1

tℓ2i+1
= Y

2ℓ−1

tℓ−1
i

+ L(Y
2ℓ−1

tℓ−1
i+1

)(tℓ2i+1 − tℓ−1
i ) + γ(Wtℓ2i+1

−Wtℓ−1
i

).
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Brownian bridge for the MLMC method (continued)

Thus, we rewrite supt∈[tℓ−1
i ,tℓ2i+1]

Y
2ℓ−1

t and supt∈[tℓ2i+1,t
ℓ−1
i+1 ] Y

2ℓ−1

t as

follows

sup
t∈[tℓ−1

i ,tℓ2i+1]

Y
2ℓ−1

t = Y
2ℓ−1

tℓ−1
i

+ γ sup
t∈[tℓ−1

i ,tℓ2i+1]

(
Wt −Wtℓ−1

i
+

1

γ
L(Y

2ℓ−1

tℓ−1
i+1

)(t − tℓ−1
i )

)
, with

Wtℓ2i+1
−Wtℓ−1

i
+

1

γ
L(Y

2ℓ−1

tℓi+1
)(tℓ2i+1 − tℓ−1

i ) =
1

γ

(
Y

2ℓ−1

tℓ2i+1
− Y

2ℓ−1

tℓ−1
i

)

and

sup
t∈[tℓ2i+1,t

ℓ−1
i+1 ]

Y
2ℓ−1

t = Y
2ℓ−1

tℓ2i+1
+ γ sup

t∈[tℓ−1
i ,tℓ2i+1]

(
Wt −Wtℓ2i+1

+
1

γ
L(Y

2ℓ−1

tℓ−1
i+1

)(t − tℓ2i+1)

)
, with

Wtℓ−1
i+1

−Wtℓ2i+1
+

1

γ
L(Y

2ℓ−1

tℓ−1
i+1

)(tℓ−1
i+1 − tℓ2i+1) =

1

γ

(
Y

2ℓ−1

tℓ−1
i+1

− Y
2ℓ−1

tℓ2i+1

)
.
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Brownian bridge for the MLMC method (continued)
Then, using the Girsanov theorem, we get

E
[
Pℓ−1

]
= E

[
P

c

ℓ−1

]
, where P

c

ℓ−1 : = g(Y
2ℓ−1

T )
2ℓ−1−1∏
i=0

(1− p2
ℓ−1

i,1 )(1− p2
ℓ−1

i,2 )

with

p2
ℓ−1

i,1 = exp
(−2(U − Y

2ℓ−1

tℓ−1
i

)+(U − Y
2ℓ−1

tℓ2i+1
)+

γ2hℓ

)
,

p2
ℓ−1

i,2 = exp
(−2(U − Y

2ℓ−1

tℓ2i+1
)+(U − Y

2ℓ−1

tℓ−1
i+1

)+

γ2hℓ

)
,

which can be rewritten as

P
c
ℓ−1 := g(Y

2ℓ−1

T )
2ℓ−1∏
i=0

(1−p2ℓ−1

i ) with p2ℓ−1

i = exp
(−2(U − Y

2ℓ−1

tℓi
)+(U − Y

2ℓ−1

tℓi+1
)+

γ2hℓ

)
,

(10)

where the coarse scheme Y
2ℓ−1

tℓi
evaluated over the finest time grid is

computed using the Brownian interpolation scheme (6).
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Brownian bridge for the MLMC method (continued)
Thus, the improved MLMC method approximates πU by

P̄U :=
1

N0

N0∑
k=1

P
f

0,k +
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

(
P

f

ℓ,k − P
c

ℓ−1,k

)
, (11)

where the condition E
[
P

f

ℓ−1

]
= E

[
P

c

ℓ−1

]
is satisfied.

Similarly, the improved MLMC method approximates π̄D by

Q̄D :=
1

N0

N0∑
k=1

Q
f

0,k +
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

(
Q

f

ℓ,k − Q
c

ℓ−1,k

)
, (12)

where

Q
f
ℓ := g(Y

2ℓ

T )
2ℓ−1∏
i=0

(1− q2ℓ

i ) with q2ℓ

i = exp
(−2(Y

2ℓ

tℓi
−D)+(Y

2ℓ

tℓi+1
−D)+

γ2hℓ

)

Q
c
ℓ−1 := g(Y

2ℓ−1

T )
2ℓ−1∏
i=0

(1− q2ℓ−1

i ) with q2ℓ−1

i = exp
(−2(Y

2ℓ−1

tℓi
−D)+(Y

2ℓ−1

tℓi+1
−D)+

γ2hℓ

)
.
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Extreme path events

For p ≥ 1, assumption (H2) is valid and sup
t∈[0,T ]

E
[
|L(Yt)|p

]
< ∞. (H̃2)

Lemma 3

Assume that conditions (H̃2), (H3) and (H4) are satisfied for a given p > 1
and 0 < L′

A < 1
2hℓ

, with hℓ = 2−ℓT sufficiently small. Let η ∈ (0, 1), then

P

(
max

(
sup

0≤i≤2ℓ
(|Ytℓi

|, |Y 2ℓ

tℓi
|, |Y 2ℓ−1

tℓi
|)
)
> h−η

ℓ

)
= o(hq

ℓ )

P

(
max

(
sup

0≤i≤2ℓ

(
|Ytℓi

− Y
2ℓ

tℓi
|, |Ytℓi

− Y
2ℓ−1

tℓi
|, |Y 2ℓ

tℓi
− Y

2ℓ−1

tℓi
|
))

> h1−η
ℓ

)
= o(hq

ℓ )

sup
0≤i≤2ℓ

P

(∫ tℓi+1

tℓi

|L(Ys)|ds > h1−η
ℓ

)
= o(hq

ℓ ) for all 0 < q < pη, and

sup
0≤i≤2ℓ

P

 sup
t∈[tℓi ,t

ℓ
i+1]

|Wt −Wtℓi
| > h

1
2
−η

ℓ

 = o(hq
ℓ ), for all q > 0.
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The drift implicit Euler MLMC analysis

Theorem 4

Let g denote a payoff function satisfying : ∃C > 0 s.t. ∀x , y > 0 and
ν ∈ R+

|g(x)− g(y)| ≤ C |x − y |(1 + |x |ν + |y |ν) and |g(x)| ≤ C (1 + |x |ν+1).
(13)

Moreover, assume that conditions (H̃2), (H3) and (H4) are satisfied for

p > 14(1+δ)2+4(1+δ)ν
1
2−δ

, with δ ∈ (0, 1/2) and 0 < L′A < 1
2hℓ

, with

hℓ = 2−ℓT sufficiently small.

If in addition inft∈[0,T ] Yt (resp. supt∈[0,T ] Yt) has a bounded density in
the neighborhood of the barrier D (resp. U), then the MLMC estimator
Q̄D given by (12) (resp. P̄U given by (11) ) for the D-O (resp. U-O)
barrier option satisfies

Var(Q
f

ℓ −Q
c

ℓ) = O(h1+δ
ℓ ) (resp.Var(P

f

ℓ − P
c

ℓ) = O(h1+δ
ℓ )).
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Time complexity analysis

Combining the complexity theorem in [Giles 2008] with the above
result, we deduce that for any δ ∈ (0, 1

2 ) the MLMC estimators Q̄D and

P̄U reach the optimal time complexity O(ε−2), for a given precision
ε > 0, and behave like an unbiased Monte Carlo estimator.

Taking δ close to 1
2 achieves a smaller variance of the difference

between the finer and coarse approximations which is of order O(hβℓ )
with β close to 3

2 similar to the case of diffusion with Lipschitz
coefficients studied in [Giles et al. 2019], but clearly leads to very
restrictive conditions on the finiteness of the moments of (Yt)t∈[0,T ] and

(Ȳ n
t )t∈[0,T ].
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Sketch of the proof
First event A1We consider any of the extreme path events given in

Lemma 3. By Cauchy-Schwarz inequality we get

E[(Q f

ℓ − Q
c

ℓ)
21A1 ] ≤ 2

√
2
(
E

1
2 [(Q

f

ℓ)
4] + E

1
2 [(Q

c

ℓ)
4]
)√

P[A1].

Then, we use Lemma 3 to get that

E[(Q f

ℓ − Q
c

ℓ)
21A1 ] = o(h

q
2 ) for all 0 < q < pη.

Second event A2 corresponds to the non-extreme paths satisfying

| inf
t∈[0,T ]

Yt −D| > hℓ
1
2−η(1+ε) for η ∈ (0, 1/2(1 + ε)) with ε > 0.

➙ We prove that for hℓ sufficiently small
∏2ℓ−1

i=0 (1− q2
ℓ

i ) and∏2ℓ−1
i=0 (1− q2

ℓ−1

i ) are both equal to 1 + o(hℓ
a) for all a > 0.

Consequently, we deduce that

E[(Q f

ℓ − Q
c

ℓ)
21A2 ] = O(hℓ

2(1−η(1+ν))).
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Sketch of the proof
Third event A3 corresponds to the rest of the non extreme paths.

➙ We prove ∣∣∣∣∣∣
2ℓ−1∏
i=0

(1− q2
ℓ

i )−
2ℓ−1∏
i=0

(1− q2
ℓ−1

i )

∣∣∣∣∣∣ = O(hℓ
1
2
−2η(1+ε)).

Therefore, as we work on the non-extreme paths events, we deduce that

|Q f
ℓ − Q

c
ℓ |2 =

∣∣∣∣∣∣g(Y 2ℓ

T )

2ℓ−1∏
i=0

(1− q2
ℓ

i )− g(Y
2ℓ−1

T )

2ℓ−1∏
i=0

(1− q2
ℓ−1

i )

∣∣∣∣∣∣
2

≤ Chℓ
1−6η(1+ε)−2ην ,

E[(Q f
ℓ − Q

c
ℓ)

21A3
] = O(hℓ

1−6η(1+ε)−2ην × P(| inf
t∈[0,T ]

Yt −D| ≤ hℓ
1
2
−η(1+ε)))

= O(hℓ
3
2
−7η(1+ε)−2ην).

➙ we choose ε = δ and η =
1
2
−δ

7(1+δ)+2ν
, which yields

E[(Q f
ℓ − Q

c
ℓ)

21A3
] = O(h1+δ) and E[(Q f

ℓ − Q
c
ℓ)

21A2
] = O(h1+δ).

Finally, for the first event, we choose q = 2(1 + δ) to guarantee that
E[(Q f

ℓ − Q
c
ℓ)

21A1
] = O(h1+δ) which is satisfied as soon as

p >
14(1 + δ)2 + 4(1 + δ)ν

1
2
− δ

.
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Application to the CIR model
we consider the problem of pricing D-O and U-O barrier options

πD = E
[
f (XT )1{inft∈[0,T ] Xt>D}

]
and πU = E

[
f (XT )1{supt∈[0,T ] Xt<U}

]
,

where f is a Lipschitz payoff function with Lipschitz constant [f ]Lip and
(Xt)0≤t≤T denotes the Cox-Ingersoll-Ross (CIR) process solution to

dXt = (a− κXt)dt + σ
√
XtdWt , X0 = x > 0 (14)

with a ≥ σ2/2, κ ∈ R, σ > 0, X0 = x > 0.

Applying the Lamperti transformation, the process (Yt)0≤t≤T given by
Yt =

√
Xt satisfies

dYt = L(Yt)dt + γdWt , Y0 =
√
x , (15)

where L(y) =
a− σ2/4

2y
− κ

2
y and γ =

σ

2
.

Thus, for g : x ∈ R 7→ g(x) = f (x2) we get

πD = E
[
g(YT )1{inft∈[0,T ] Yt>

√
D}

]
and πU = E

[
g(YT )1{supt∈[0,T ] Yt<

√
U}

]
.
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As a− σ2/4 > 0, we easily check assumptions (H1) and (H4).

Besides, noticing that lim
y→0+

L′(y) = lim
y→0+

− (a−σ2/4)
2y2 − κ

2 = −∞, we

deduce that L is decreasing on (0, ϵ) for ϵ small enough. It is also globally
Lipschitz on [ε,+∞) so that assumption (H3) is satisfied with A = ε and

L′A =
|a−σ2/4|

2ε2 + κ
2 .

To check (H̃2) it is enough to show that

sup
t∈[0,T ]

E
[
|L′(Yt)L(Yt)|p + |L′′(Yt)|p + |L′(Yt)|(2∨p) + |L(Yt)|p

]
< ∞

which is clearly satisfied as soon as

sup
t∈[0,T ]

E
[
Y

−(4∨3p)
t

]
= sup

t∈[0,T ]

E
[
X

−(2∨ 3
2 p)

t

]
< ∞.

Recalling that supt∈[0,T ] E
[
X q
t

]
< ∞ for all q > − 2a

σ2 we easily conclude

that this holds when σ2 < a and p < 4
3

a
σ2 .

Consequently, for δ ∈ (0, 1/2), if 4
3

a
σ2 > p > 14(1+δ)2+4(1+δ)

1−2δ
> 18 then

Theorem 7 is valid provided that inft∈[0,T ] Yt (resp. supt∈[0,T ] Yt) has a
bounded density in the neighborhood of the barrier.
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Running maximum of the CIR process

Let us introduce firstly the confluent hypergeometric function

1F1(x , b, y) defined for all y , x ∈ C and b ∈ C \ {0,−1,−2, · · · } by

1F1(x , b, y) =
∞∑
n=0

(x)n
(b)nn!

yn,

where (x)n = x(x + 1)...(x + n − 1) stands for the Pochhammer symbol.

Theorem 5

Let (Xt)0≤t≤T denote the CIR process solution to (14). Then
supt∈[0,T ] Xt has a continuous density on any compact set
K ⊂ (X0,+∞), given by

z ∈ K 7→ PCIR,Max(z) =
1

2π

∫ +∞

−∞
e(1+iu)T ϕ̂(u, z)du

with

ϕ̂(u, z) =
1F1((1 + iu)/κ, 2a/σ2, 2κX0/σ

2)1F1((1 + iu)/κ+ 1, 2a/σ2 + 1, 2κz/σ2)

a1F1((1 + iu)/κ, 2a/σ2, 2κz/σ2)2
.
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Running minimum of the CIR process
To do so, we introduce the Tricomi confluent hypergeometric function

U(a, b, z) defined for all a, z ∈ C and b ∈ C \ {±0,±1,±2, ...} by

U(a, b, z) =
Γ(1− b)

Γ(1 + a− b)
1F1(a, b, z) +

Γ(b − 1)

Γ(a)
z1−b

1F1(1 + a− b, 2− b, z).

Let us denote by τX0↓z := inf{t ≥ 0 : Xt = z} for 0 < z < X0. By

[Chou and Lin 2006]

E[e−sτX0↓z ] =
U(s/κ, 2a/σ2, 2κX0/σ

2)

U(s/κ, 2a/σ2, 2κz/σ2)
, for s > 0.

Theorem 6

The running minimum inft∈[0,T ] Xt has a continuous density on any
compact set K ⊂ (0,X0), given by

z ∈ K 7→ PCIR,Min(z) =
1

2π

∫ +∞

−∞
e(1+iu)T ψ̂(u, z)du

with

ψ̂(u, z) =
2U((1 + iu)/κ, 2a/σ2, 2κX0/σ

2)U((1 + iu)/κ+ 1, 2a/σ2 + 1, 2κz/σ2)

σ2U((1 + iu)/κ, 2a/σ2, 2κz/σ2)2
.
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Numerical Tests
we consider the problem of pricing D-O and U-O barrier options

πD = E
[
f (XT )1{inft∈[0,T ] Xt>D}

]
and πU = E

[
f (XT )1{supt∈[0,T ] Xt<U}

]
,

where the payoff function f (x) = e−rT (x − K )+.

By the Lamperti transform we get

πD = E
[
g(YT )1{inft∈[0,T ] Yt>

√
D}

]
and πU = E

[
g(YT )1{supt∈[0,T ] Yt<

√
U}

]
,

where g(x) = e−rT (x2 − K )+ and (Yt)t∈[0,T ].

We consider our interpolated drift implicit scheme

Y
n

t = Y
n

ti +

(
a− γ2

2Y
n

ti+1

− κ

2
Y

n

ti+1

)
(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1],

Y0 =
√
X0 and γ =

σ

2
.

For n large enough, the positive solution is

Y
n
ti+1

=

√
(2 + κT

n
)(a− γ2)T

n
+ (γ(Wti+1 −Wti ) + Y

n
ti )

2 + γ(Wti+1 −Wti ) + Y
n
ti

2 + κT
n

.
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Numerical tests

We take r = 0.1, X0 = 100, a = 0, κ = −0.1, σ = 2.5 and T = 0.5.
For the D-O option the strike is K = 95, and the barrier D = 90 and for
the U-O option the strike is K = 105 and the barrier U = 120.

The benchmark prices given in [Davydov and Linetsky 2001] for the
D-O (resp. U-O) option is 10.6013 (resp. 0.7734).

The performance of the improved MLMC is given in the tables and
figure below.

Accuracy Price MLMC cost MC cost Saving

10−3 10.669 2.588× 108 6.752× 1010 260.91
5× 10−3 10.668 1.051× 107 3.376× 108 32.13
10−2 10.668 2.510× 106 4.220× 107 16.81

2× 10−2 10.677 6.187× 105 5.275× 106 8.52

Table: MLMC complexity tests for D-O barrier option pricing of πD

24 / 37



Numerical tests

Accuracy Price MLMC cost MC cost Saving

10−3 0.77200 4.674×106 4.221×108 90.32
5× 10−3 0.76926 1.571×105 2.11×106 13.44
10−2 0.77015 3.809× 104 2.638× 105 6.93

2× 10−2 0.78168 1.463× 104 6.596× 104 4.51

Table: MLMC complexity tests for U-O barrier option pricing πU

(a) Approximation of πD (b) Approximation of πU

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CIR model.
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Application to the CEV model
For CEV process solution to

dXt = µXtdt + σXα
t dWt , t ≥ 0, ,X0 > 0, µ ∈ R and α > 1

we consider the problem of pricing an U-O barrier option

ΠU-O,X
D := E

[
f (XT )1{supt∈[0,T ] Xt<D}

]
and ΠD-O,X

U := E
[
f (XT )1{inft∈[0,T ] Xt>U}

]
f is a given Lipschitz function with Lipschitz constant [f ]Lip.

For α > 1, by Feller’s test the solution (Xt)t∈[0,T ] is positive.

So applying the Lamperti transformation, Yt = X 1−α
t is well defined on

I = (0,+∞) and satisfies

dYt = L(Yt)dt + γdWt , Y0 = X 1−α
0

where L(y) = (1− α)
(
µy − ασ2

2 y
−1
)
and γ = σ(1− α) and thus

ΠU-O,X
D = E

[
g(YT )1{inft∈[0,T ] Yt>D1−α}

]
and ΠD-O,X

U = E
[
g(YT )1{supt∈[0,T ] Yt<U1−α}

]
,

with g : x ∈ R 7→ f (x
1

1−α ).
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Application to the CEV model
As lim

y→0+
L′(y) = lim

y→0+
(1− α)(µ+ ασ2

2 y
−2) = −∞, we deduce that L

is decreasing on (0, ϵ) for ϵ > 0 small enough and it is clearly globally
Lipschitz on [ε,+∞) so that assumption (H3) is satisfied.

On the one hand, by Itô’s formula the process (Zt)0≤t≤T given by

Zt =
X

−2(α−1)
t

4(α−1)2 is a CIR process solution to

dZt = (a− κZt)dt − σ
√

ZtdWt ,Z0 =
X

−2(α−1)
0

4(α− 1)2
,

with a = σ2(2α−1)
4(α−1) and κ = 2µ(α− 1). Thanks to this second

transformation we deduce that supt∈[0,T ] E[Y
q
t ] < ∞ for q > − 2α−1

2(α−1) .

On the other hand to check assumption (H̃2) it is enough to show that

sup
t∈[0,T ]

E
[
|L′(Yt)L(Yt)|p + |L′′(Yt)|p + |L′(Yt)|(2∨p) + |L(Yt)|p

]
<∞

which is satisfied if supt∈[0,T ] E
[
Y

−(4∨3p)
t

]
< ∞. This condition is

satisfied when 4 < 2α−1
2(α−1) (i.e. α ∈ (1, 7

6 )) and p < 2α−1
6(α−1) .
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Corollary 7

For α > 1, let (Yt)t≥0 denotes the Lamperti transform of the CEV
process (Xt)t≥0 solution to

dYt = L(Yt)dt + γdWt , Y0 = X 1−α
0

where L(y) = (1− α)
(
µy − ασ2

2 y
−1
)
and γ = σ(1− α).

Let g : x ∈ R 7→ f (x
1

1−α ) denotes the payoff function with f a
continuous Lipschitz function. Moreover, for δ ∈ (0, 1/2), let us choose α
close enough to 1 s.t.

2α− 1

6(α− 1)
>

14(1 + δ)2

1
2 − δ

> 28.

If in addition inft∈[0,T ] Yt has a bounded density in the neighborhood of

the barrier D, then the MLMC estimator Q̄D given by (12) for the D-O
barrier option satisfies

Var(Q
f

ℓ −Q
c

ℓ) = O(h1+δ
ℓ ).
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Application to the CEV model

Remark.

One can also consider the CEV process for α ∈ ( 12 , 1) solution to

dXt = (a− κXt)dt + σYα
t dWt , with X0 > 0, a > 0.

It can be easily checked that for a > 0 this SDE is well defined on
I = (0,+∞).

However, all the conditions of Theorem 4 apply except the condition
that inft∈[0,T ] Xt or supt∈[0,T ] Xt admits a continuous density in the
neighborhood of the barrier seems to be a challenging problem.
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Running maximum of the CEV process

Let us denote by τX0↑z := inf{t ≥ 0 : Xt = z} the first time that the
CEV process (Xt)t≥0 starting at X0 hits the level z > X0.

From [Jeanblanc, Yor and Chesney 2009], the Laplace transform of the
hitting time τX0↑z is given by

E[e−sτX0↑z ] =
(X0

z

)β+ 1
2

exp
( ϵ
2
c(X−2β

0 − z−2β)
)Wk,n(cX

−2β
0 )

Wk,n(cz−2β)
,

with ϵ = sign(µβ), n = 1
4β , k = ϵ

(
1
2 + 1

4β

)
− s

2|µβ| and Wk,n the

Whittaker’s function Wk,n(y) = yn+ 1
2 e−y/2U(n − k + 1

2 , 2n + 1, y),
where U denotes the confluent hypergeometric function of second kind

and β = α− 1 and c =
|µ|
βσ2

.
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Running maximum of the CEV process

Theorem 8

Let (Xt)0≤t≤T denotes the CEV process solution to (26). Then
supt∈[0,T ] Xt has a continuous density on any compact set

K ⊂ (X0,+∞), given by

z ∈ K 7→ PCEV, Max(z) =
1

2π

∫ +∞

−∞
e(1+iu)T Φ̂(z, u)du,

with

Φ̂(z, u) = −
c

µ
z−2β−1

U( 1+iu
2µβ

, 1 + 1
2β
, cX−2β

0 )U( 1+iu
2µβ

+ 1, 2 + 1
2β
, cz−2β)

U( 1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

, for µ > 0

and

Φ̂(z, u) = −cz−2β−1

(
2β + 1

1 + iu
−

1

µ

)

×
U(1 + 1

2β
− 1+iu

2µβ
, 1 + 1

2β
, cX−2β

0 )U(2 + 1
2β

− 1+iu
2µβ

, 2 + 1
2β
, cz−2β)

U(1 + 1
2β

− 1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

,

for µ < 0.
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Running minimum of the CEV process

Let us denote by τX0↓z := inf{t ≥ 0 : Xt = z} the first time that the
CEV process (Xt)t≥0 starting at X0 hits the level 0 < z < X0.

By [Jeanblanc, Yor and Chesney 2009] the Laplace transform of the
hitting time τX0↓z := inf{t ≥ 0 : Xt = z} is given by

E[e−sτX0↓z ] =
(X0

z

)β+ 1
2

exp
( ϵ
2
c(X−2β

0 − z−2β)
)Mk,n(cX

−2β
0 )

Mk,n(cz−2β)

with ϵ = sign(µβ), n = 1
4β , k = ϵ

(
1
2 + 1

4β

)
− s

2β|µ| and the Whittaker

function

Mk,n(y) = yn+ 1
2 e−

y
2 1F1(n − k +

1

2
, 2n + 1, y),

where 1F1 denotes the confluent hypergeometric function of the first kind

with β = α− 1 and c =
|µ|
βσ2

.
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Running minimum of the CEV process

Theorem 9

Let (Xt)0≤t≤T denotes the CEV process solution to (26). Then
inft∈[0,T ] Xt has a continuous density on any compact set K ⊂ (0,X0),
given by

z ∈ K 7→ PCEV, Min(z) =
1

2π

∫ +∞

−∞
e(1+iu)T Ψ̂(z , u)du,

with

Ψ̂(z, u) =
cz−2β−1

µ(1 + 1
2β

)

1F1(
1+iu
2µβ

, 1 + 1
2β
, cX−2β

0 )1F1(
1+iu
2µβ

+ 1, 2 + 1
2β
, cz−2β)

1F1(
1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

, for µ > 0

and

Ψ̂(z, u) = cz−2β−1

(
2β

1 + iu
−

1

µ(1 + 1
2β

)

)

×
1F1(1 + 1

2β
− 1+iu

2µβ
, 1 + 1

2β
, cX−2β

0 )1F1(2 + 1
2β

− 1+iu
2µβ

, 2 + 1
2β
, cz−2β)

1F1(1 + 1
2β

− 1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

, for µ < 0.
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Numerical testes

we used our interpolated drift implicit scheme

Y
n
t = Y

n
ti
+ (1− α)

(
µY

n
ti+1

− α
σ2

2Y
n
ti+1

)
(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1[, 0 ≤ i ≤ n − 1,

Y0 = X0
1−α, and γ = σ(1− α).

For n large enough, the positive solution to the above implicit scheme
is explicit and given by

Y
n
ti+1

=

√
2σ2α(α− 1)(1 + µ(α− 1)T

n
)T
n
+ (γ(Wti+1 −Wti ) + Y

n
ti
)2 + γ(Wti+1 −Wti ) + Y

n
ti

2 + 2µ(α− 1)T
n

.

We choose α = 1.2, X0 = 100, µ = 0.1, σ = 0.2, T = 1. The payoff

function g(x) = e−rT (x
1

1−α − K )+ is a discounted call function with
r = 0.1. For the U-O option the strike is K = 90, and the barrier
D = 150. For the D-O option the strike is K = 100 and the barrier
U = 90.
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Numerical tests

The tables and the figures below confirm the high performance of the
improved MLMC.

Accuracy Price MLMC cost MC cost Saving

10−4 3.0390 8.226× 109 7.34× 1013 8922.33
5× 10−4 3.0391 3.17× 108 3.67× 1011 1155.67
10−3 3.041 7.436× 107 4.587× 1010 616.91
10−2 3.0452 6.539× 105 5.734× 107 87.69

Table: MLMC complexity tests for the U-O barrier option pricing of ΠU-O,X
D

Accuracy Price MLMC cost MC cost Saving

5× 10−4 11.102 6.483×109 1.642×1013 2532.83
10−3 11.103 1.608× 109 2.053× 1012 1276.66

5× 10−3 11.106 6.379×107 2.053×1010 321.77
10−2 11.094 1.587× 107 2.566× 109 161.69

Table: MLMC complexity tests for the D-O barrier option pricing of ΠD-O,X
U
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Numerical tests

(a) Approximation of ΠU-O,X
D (b) Approximation of ΠD-O,X

U

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CEV model
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