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Radial basis functions

ϕ(∥x− c∥) for x, c ∈ Rd

E.g., scattered data interpolation

f(x) ≈ f̃(x) =
n∑

i=1

βiϕ
(
∥x− xi∥

)
Versus ridge functions

ϕ(xTθ) θTθ = 1
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What we find
Some RBFs become essentially additive in high dimensions

Why we care

That limits their usefulness as

approximators

covariance functions

Other RBFs

Not necessarily additive

Same for ridge functions
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Concentration of measure
High dimensional and Lipschitz

⇒ Nearly constant

Donoho (2000)

Variation around constant

Depends
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RBF interpolation

f̃(x) =

n∑
i=1

βiϕ(∥x− xi∥)

Scattered data xi

e.g., IID

Choose β = (β1, . . . , βn) ∈ Rn so that

f̃(xi) = f(xi)

Doable for

Strictly positive definite RBFs

some ‘conditionally positive definite’ RBFs

See Fasshauer (2007)

Polynomial interpolation not always effective
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Some strictly PSD RBFs
r = ∥x− c∥ e.g., c = xi

ϕ(r) = exp(−θ2r2) Gaussian / squared exponential

ϕ(r) = (1 + θ2r2)p p < 0 Generalized inverse multiquadric

ϕ(r) = (1 + θ2r2)−1/2 Inverse multiquadric

ϕ(r) = (1 + θ2r2)1/2 Multiquadric Hardy (1971)

Schoenberg condition

ϕ(r) =

∫ ∞

0

e−r2t2µ(dt)

For strictly PSD RBF, any d ⩾ 1

Fasshauer (2007) Theorem 3.8

ϕ(·) ⩾ 0 nondecreasing
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ANOVA
For xj ∼ Fj independent & 0 < E(f(x)2) < ∞
Fisher & Mackenzie, Hoeffding, Sobol’, Efron & Stein

Notation

[d] ≡ {1, 2, . . . , d} For u ⊆ [d], xu = (xj)j∈u

ANOVA decomp

f(x) =
∑
u⊆[d]

fu(x)

fu(x) only depends on xu

Recursive definition

f∅(x) = E(f(x))

fu(x) = E
(
f(x)−

∑
v⊊u

fv(x) | xu

)
= E(f(x) | xu)−

∑
v⊊u

fv(x)
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ANOVA continued
Recall f(x) =

∑
u⊆[d] fu(x)

From orthogonality

σ2 = Var(f(x))

σ2
u = Var(fu(x))

σ2 =
∑
u⊆[d]

σ2
u
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Mean dimension

ν(f) =
∑
u⊆[d]

|u|σ
2
u

σ2

E.g., for d = 3

ν(f) =
σ2
{1} + σ2

{2} + σ2
{3} + 2σ2

{1,2} + 2σ2
{1,3} + 2σ2

{2,3} + 3σ2
{1,2,3}

σ2

Additivity

R2
add =

1

σ2

d∑
j=1

σ2
{j}

ν(f) ⩽ 1 + ϵ =⇒ R2
add ⩾ 1− ϵ
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Sobol’ indices
τ̄2j =

∑
v: j∈v

σ2
v

Jansen

τ̄2j =
1

2
E
(
(f(x)− f(zj :x−j))

2
)

Liu & O∑
u⊆[d]

|u|σ2
u︸ ︷︷ ︸

2d terms

=
d∑

j=1

τ̄2j︸ ︷︷ ︸
d terms

Pick freeze

For zj :x−j replace xj by independent zj
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Main result
For generalized multiquadrics, independent xj

f(x) = (a+ ∥x− c∥2)p a ⩾ 0 p < 1

Then under conditions

ν(f) = 1 +O(d−1) With explicit constant

More notation

zj =

a+ (x1 − c1)
2, j = 1

(xj − cj)
2, j > 1.

Study

Mean dim of (
d∑

j=1

zj

)p

equals mean dim in x
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Transforming to z
zj =

a+ (x1 − c1)
2, j = 1

(xj − cj)
2, j > 1.

Define

µj = E(zj) σ2
j = Var(zj) µ

(k)
j = E((zj − µj)

k)

µ1:d =
d∑

j=1

µj σ2
1:d =

d∑
j=1

σ2
j µ

(k)
1:d =

d∑
j=1

µ
(k)
j

Under conditions (up to 6 moments)

ν(f) ⩽ 1 +
(p− 1)2

2

σ2
1:d

(µ1:d)2
+O

( 1

d2

)
Weaker conditions

ν(f) → 1
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Proof strategy

ν(f) =

∑d
j=1 τ̄

2
j

σ2

lim sup
d→∞

∑d
j=1 τ̄

2
j

p2σ2
1:d/(µ1:d)2

⩽ 1

lim inf
d→∞

Var(f(z))

p2σ2
1:d/(µ1:d)2

⩾ 1

Ingredients

Taylor expansions

moment bounds

Jansen identity

negative moment bounds

central limit theorem
June 2023
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Gaussian RBF

f(x) =
d∏

j=1

exp(−(xj − cj)
2/ϑ2)

Mean dim of a product

For f(x) =
∏d

j=1 gj(xj)

ν(f) =

∑d
j=1 ρj

1−
∏d

j=1(1− ρj)

ρj = Var(zj)/E(z2j ) ∈ [0, 1]

O (2003)

Then
∂

∂ρk
ν(f) ⩾ 0

Hoyt & O (2023)

So · · · larger ρj ⇒ larger ν
June 2023
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Gaussian RBF theorem
Pick θ to get any 0 < ρj < 1

⇒ get any 1 < ν(f) < d

Independent xj with

zj =
(xj − cj)

2

θ2
Var(xj) > 0 PDFs hj(xj) ⩽ M

Then

f(x) = f(z) =
d∏

j=1

exp(−zj)

can attain any 1 < ν(f) < d by choosing θ

Speculation

This may be why Gaussian RBFs dominate other RBFs in machine learning
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Ridge in RQMC/QMC

x ∼ N (0, Id) fd(x) = g(θTx)

Family of test functions with same mean and variance

In any dimension

For Lipschitz g(·)

sup
d⩾1

ν(fd) < ∞

Get modest limiting mean dimension, e.g., ⩽ 2 or 3.

Speculation

This may be why ridge functions dominate Gaussian RBFs in machine learning
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Covariance functions
Gaussian process (GP) model for f(x) on x ∈ Rd

E(f(x)) = µ(x) Cov(f(x), f(x̃)) = Σ(x, x̃)

For a GP

Σ(x, x̃) = ϕ
(
∥x− x̃∥

)
ϕ is additive ⇒ f is additive

Additive f is a sum of independent GPs

Speculation

This may be why Gaussian covariances dominate multiquadrics in GP models
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Keister function∫
Rd

e−∥x∥2

cos(∥x∥) dx

Keister (1996), Capstick & Keister (1996)

Resembles problems from physics Rewrite

E
(
cos
(∥x∥

2

))
x ∼ N (0, Id)

QMC context

This function treats all inputs symmetrically

Yet we still see good QMC integration

Papageorgiou & Traub (1997)

Mean dimension

It has modest mean dimension in any d

and smoothness

⇒ QMC accuracy not surprising
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Keister mean dimension
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ν(f) vs
√
d

Five independent QMC estimates overlaid

Based on Jansen identity and 3 χ2 random variables
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Why the oscillation?

∥x∥2 ∼ χ2
(d) ≈ N (d, 2d)

By delta method (Taylor’s theorem)

∥x∥
2

≈ N
(√d

2
,
1

4

)
≈ 99.9% of N (α, 1/4) is in α± 1.65

Distn of ∥x∥/2 uses ≈ half period of cosine

Centering
√
d

2π
≈ integer ⇒ cos(·) nearly pure quadratic ⇒ ν(f) ≈ 2

√
d

2π
≈ integer +

1

2
⇒ cos(·) nearly linear ⇒ ν(f) ≈ 1
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