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Stochastic Filtering in Biology
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Applicability:
• to unravel cellular functions not fully understood
• inference purposes
• design feedback controllers
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Drawbacks of the current methods: Kalman Filter
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Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations

Kalman Filter (– –):
• It requires linearity of the underlying model
• Not accurate at estimating low copy number regimes: the hidden process trajectory is not even

included in the standard deviation bandwidth
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Drawbacks of the current methods: Particle Filter (Rathinam, JCP 2021)

M P

Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations

Particle Filter (—-):
• Accurate at estimating summary statistics, but not probability distributions, in particular rare

events probabilities
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Need for New Filters for the Stochastic Reaction Networks Setting

Goal: Infer Hidden cellular states based on partial observations accurately
and efficiently

Current Issues: The existing methods fail due to non-linearity,
high-dimensionality, etc.

Our Solution: Provide with computational methods to compute the
conditional distribution very accurately and efficiently
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Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species
• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0
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Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

• We can define:
– n1 components to define ν′

k, and ν′′
k with the remaining n2 components

– O = {i = 1, . . . , M |ν′′
i ̸= 0} and Oc = U

– Ok = {i ∈ O|ν′′
i = y(tk) − y(t−

k )},

• Our goal is to compute π(t, x) ≜ P {X(t) = x|Y(s) = y(s), 0 ≤ s ≤ t} for any x ∈ Zn1
+ , and for

tk ≤ t ≤ tk+1:

π′(t, x) =
∑
j∈U

π(t, x − ν′
j)aj(x − ν′

j , y(tk)) −
∑
j∈U

π(t, x)aj(x, y(tk))

− π(t, x)

(
aO(x, y(tk)) −

∑
x′

aO(x′, y(tk))π(t, x′)

)
∀x ∈ Zn1

+ ,

where aO(x, y(tk)) =
∑

j∈O aj(x, y(tk)).
• At the jump times tk, k = 1, . . .:

π(tk, x) =

∑
l∈Ok

al(x − ν′
l , y(tk−1)π(t−

k
, x − ν′

l)∑
x′

∑
l∈Ok

al(x′, y(tk−1))π(t−
k

, x′)
∀x ∈ Zn1

+
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Similarities with the CME and challenges inherent with the Filtering Equation

Methods for solving the CME :
• Finite State Projection (Munsky et al., 2006, J.

Chem. Phys.)
• MonteCarlo Methods (SSA, Next Reaction

Method) (Gillespie and Petzold J. Chem.
Phys. 2009, Anderson et al. J. Chem. Phys.
2006)

• Moment Closure Methods
• Machine Learning Algorithms (DeepCME)

(Gupta et al., PLOS CB, 2022)
• Hybrid Methods (Fang et al. 2022 bioRxiv, J

Hasenauer et al. J Math. Biol. 2014, Duso et
al. J. Chem. Phys. 2018)

Methods for solving the filtering equation:
• Filtered Finite State Projection (FFSP)

(Completed work, D’Ambrosio et al. 2022,
bioRxiv)1

• Particle Filtering Algorithms (Fang et al.
SIAM 2023, Rathinam et al., J. Chem. Phys.
2021)

• Moment Closure Methods (Zechner et al.,
CMSB 2022)

• Machine Learning (In Progress)

1Elena Sofia D’Ambrosio et al. “Filtered finite state projection method for the analysis and
estimation of stochastic biochemical reaction networks”. In: bioRxiv (2022).
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How to address the challenges inherent with the filtering equation

Nonlinearity: ρ(t, x) ≜ π(t, x) exp
(

−
∫ t

max{tk|tk≤t}

[∑
x̃∈Z

n1
≥0

aO(x̃, Y(s))π(s, x̃)
]

ds
) Un-normalised

Distribution
satisfies

the Zakai Equation
For tk ≤ t < tk+1 and x ∈ Zn1 :

ρ′(t, x) =
∑
j∈U

ρ(t, x−ν′
j)aj(x−ν′

j , y(tk))−
∑
j∈U

ρ(t, x)aj(x, y(tk))−ρ(t, x)aO(x, y(tk)) ∀x ∈ Zn1
+

For t = tk+1 and x ∈ Zn1 : ρ(tk+1, x) =

∑
j∈Ok+1

aj (x−ν′
j ,Y(tk))ρ(t−

k+1,x−ν′
j )∑

x̃

∑
j∈Ok+1

aj (x̃,Y(tk))ρ(t−
k+1,x̃)

High dimensionality: ρFFSP(t, XP ) = (ρFFSP(t, x1), . . . , ρFFSP(t, xP ))⊤ finite-dimensional vector

Filtered Finite State Projection
ρ̇FFSP(t, XP ) = AP (Y(tk))ρFFSP(t, XP )
∀k ∈ Z≥0 and ∀t ∈ [tk, tk+1)
ρFFSP(tk+1, XP ) = APjump (Y(tk))ρFFSP(t−

k+1, XP )
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Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):

– Approximating the solution of the equation with the NN during the training by comparing
l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023
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Extending the DeepCME approach to solve the noise-free filtering equation

• Let Z(t) ∈ Z ⊆ Zn
≥0 be the state of a CTMC and Z(0) = z0

• In the DeepCME , the goal is to compute

E(g(Z(t))) =
∑
x∈Z

g(z)p(t, z)

where g is a suitable real-valued function, typically called output function.
• Given the filtration generated by (Z(t))t≥0, we can define a martingale in the interval [0, T ]:

Vg(t, Z(t)) = E(g(Z(T ))|Z(t)), such that Vg(0, z0) = E(g(Z(T )))

• Vg satisfies this ’almost sure’ relationship:

Vg(T, Z(T )) = Vg(0, Z(0)) +
M∑

k=1

∫ T

0
∆kVg(t, Z(t))dR̃k(t).

where for each reaction channel k = 1, . . . , M , ∆kVg(t, x) := Vg(t, x + νk) − Vg(t, x) and
R̃k(t) := Yk

(∫ t

0 ak(X(s))ds
)

−
∫ t

0 ak(X(s))ds
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Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T ))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T ))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T ] (t, V(t), w(t)) = E

[
g(V(T ))w(T )|(V(t), w(t), y[0,T ])

]
s.t.:

E
[
g(X(T ))|y[0,T ]

]
=

E
[
Mg,y[0,T ] (0, V(0), w(0))|y[0,T ]

]
E
[
M1,y[0,T ] (0, V(0), w(0))|y[0,T ]

]
– Approximate Mg,y[0,T ] (·) with a DNN and train it with an ’almost sure’ relationship
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Definition of V and w over the whole time horizon (Rathinam et al. 2021)

• Under the non-explosivity condition, we can write V(t) and w(t) over the whole time horizon as
the following:

V(t) = V(0) +
∑
j∈U

Rj

(∫ t

0
aj (V(s), y(s)) ds

)
ν′

j +
m1∑
k=1

∫ t

0
sµk (s)dR̃µk (s)

w(t) = w(0) exp

{
−
∫ t

0
aO(V(s), y(s))ds +

m1∑
k=1

∫ t

0
ln Aµk (s)dR̃µk (s)

}
,

• where {sµk (t), Aµk (t)}t≥0 are two stochastic processes described for each t ≥ 0 and
k = 1, . . . , m1 by the following joint probability distribution:

P
(
(sµk (t), Aµk (t)) = (ν′

j , aj(V(t−), y(t−)))| (V(t−), y(t−))
)

=


1

|Õµk
(t−)| if j ∈ Õµk (t−)

0 otherwise

being Õµk (t) = {j ∈ Oµk |aj(V(t), y(t)) ̸= 0}.
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Schematic Representation of V and w

Z(t) = (X(t), Y(t)) ∈ ℤn≥0 X(t) ∈ 𝒳 ⊆ ℤn1≥0 hidden species Y(t) ∈ ℤn2≥0observed species
(V(t), w(t)) auxiliary processes V(t) ∈ ℤn1≥0mimicking the hidden dynamics w(t) ∈ ℝ≥0

t < t1

V(t0)
V(t−1 )

V(t) = V(t0) + ∑
j∈𝒰

Rj (∫
t

0
aj(V(s), Y(t0))ds) ν′￼j

t01

t02

t01

w(t01) = w(t0)exp {−a𝒪(V(t0), Y(t0))(t01 − t0)}

t02

w(t02) = w(t02)exp {−a𝒪(V(t01), Y(t0))(t02 − t01)}

w(t0) = 1

w(t−1 )

V(t1)
V(t−2 )

 for  j ∈ 𝒪1 = {j ∈ 𝒪 |ν′￼′￼j = Y(t1) − Y(t−1 )}
with probability  1

|𝒪1 |

V(t1) = V(t−1 ) + ν′￼j
w(t1) = aj(V(t−1 ), Y(t0))w(t−1 )

w(t1)

w(t−2 )

Y(t0) Y(t1) Y(t2)
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Martingale Dynamics

Between the observation process jump times, tk ≤ t < tk+1, Mg,y satisfies:

dMg,y[0,T ] (t, V(t), w(t)) = Mg,y[0,T ] (t, V(t), w(t))
∑
j∈U

aj(V(t), y(tk))dt

−
∑
j∈U

Mg,y[0,T ] (t, V(t) + ν′
j , w)aj(V(t), y(tk))dt

+
∑
j∈U

[
Mg,y[0,T ] (t

−, V(t−) + ν′
j , w(t−)) − Mg,y[0,T ] (t

−, V(t−), w(t−))
]

dRj(t)

Then Mg,y[0,T ] satisfies the following dynamic backward equation for t = tk:

Mg,y[0,T ] (t
−
k , V(t−

k ), w(t−
k ))

= 1
Õµl (t

−
k )

∑
j∈Õµl

(t−
k

)

Mg,y[0,T ] (tk, V(t−
k ) + ν′

j , aj(V(t−
k ), y(tk−1))w(t−

k ))

where µl = y(tk) − y(t−
k ).
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Neural Network Structure

Inputs: ({tk}y
k∈ℕ ≤ T, y[0,T], t, V(t), w(t)) t0 ≤ t ≤ T

Encoder/Decoder

Embedding

FFNN

NNθ
g,y[0,T] ≈ Mg,y[0,T](t, V(t), w(t)) = 𝔼 [g(V(T))w(T) (V(t), w(t), y[0,T])]

Goal: compute 𝔼 [g(X(T )) |y[0,T]]  for some bounded function g and T > 0

How : 𝔼 [g(X(T)) |y[0,T]] =
𝔼 [Mg,y[0,T](0,V(0), w(0) |y[0,T]]
𝔼 [M1,y[0,T](0,V(0), w(0) |y[0,T]]

Output:

and for any given trajectory of Y(s) = y(s) 0 ≤ s ≤ T,  namely y[0,T]

Here g = (g, 1),where g : ℤn1≥0 → ℝM and 1 : ℤn1≥0 → ℝ constant one function
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Loss Function Definition

• Mg,y[0,T ] satisfies between the observation process jump times tk ≤ t < tk+1 :

Mg,y[0,T ] (t
−
k+1, V(t−

k+1), w(t−
k+1)) = Mg,y[0,T ] (tk, V(tk), w(tk))

+
∑
l∈U

∫ t−
k+1

tk

AlMg,y[0,T ] (s)dR̃l(s)

where Ajf(t, v, w) = f(t, v + ν′
j , w) − f(t, v, w) with f a bounded function in the domain of Aj

for j ∈ U and R̃j , for j ∈ U , are the centered Poisson processes.

• Main Idea: Creating the loss function according to the martingale dynamics between the jumps,
and adding the costraints at the jumps

• It is reasonable to think that the NNθ
g,y[0,T ] minimising the loss function should be a good

approximation of Mg,y[0,T ]

NNθ
g,y[0,T ] ≈ Mg,y[0,T ]
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Loss Function Definition

ℒ(NNθ
g,y[0,T ], V[0,T], w[0,T], y[0,T]) := ∑

tk+1<T

NNθ
g,y[0,T ]({tk}y

k∈ℕ, y[0,T], t−
k+1, V(t−

k+1), w(t−
k+1)) − NNθ

g,y[0,T ]({tk}y
k∈ℕ, y[0,T], tk, V(tk), w(tk)) − ∑

l∈𝒰 ∫
t−
k+1

tk

AlNNθ
g,y[0,T ](s)dR̃l(s)

Evolution of the martingale until the last jump before T

+ g(V(T ))w(T )) − NNθ
g,y[0,T ]({tk}y

k∈ℕ, y[0,T], tlast, V(tlast), w(tlast)) − ∑
l∈𝒰 ∫

T

tlast
AlNNθ

g,y[0,T ](s)dR̃l(s)

Evolution of the martingale between the last jump and T

+∑
tk<T

NNθ
g,y[0,T ]({tk}y

k∈ℕ, y[0,T], t−
k , V(t−

k ), w(t−
k )) − 1

𝒪̃μl
(t−

k ) ∑
j∈𝒪̃μl

(t−
k )

NNθ
g,y[0,T ]({tk}y

k∈ℕ, y[0,T], tk, V(t−
k ) + ν′￼j, aj(V(t−

k ), y(tk−1))w(t−
k ))

Evolution of the martingale at the jump times before T

Loss(θ) = 𝔼 [ℒ(NNθ
g,y[0,T], V[0,T], w[0,T], y[0,T])]
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Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T ] , V[0,T ], w[0,T ], y[0,T ])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods

– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T ]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T ], w[0,T ], y[0,T ]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T ], w[0,T ], y[0,T ])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T ], wj

[0,T ], y[0,T ])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function
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• How to practically compute the expectations in the loss function given the inaccessibility to all the
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Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states

• We have developed a method which exploits the power of Machine Learning to tackle high
dimensional problems by extending the DeepCME

• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training
• Try to make predictions at intermediate times t ≤ T
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