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Outline of The Talk

© The Euler Multilevel Monte Carlo scheme
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@ We are interested in approximating barrier option prices such as the
Down-and-Out (D-O) and the Up-and-Out (U-O) barrier options

TBp = ]E|:f(XT)1{inftE[0,T] Xt>BD}] and T8y = E[f(XT)l{SUPre[o,T] XI<BU}}
for a process (X:)¢epo, 77 solution to
dXt = b(Xt)dt + O'(Xt)th, XO = X, (1)

where (W;)¢>0 isas.B.M. b: R — R and ¢ : R — R are loc.
Lipschitz-functions such that % is loc. integrable.

e For ¢(y) = yyo ﬁdx, if o € C? then by the Lamperti transform
Y: = ¢(X;) solves the stochastic differential equation

dY: = L(Xp)dt + dW,, Yo = ¢(x),
with L(x) = (£ = 5 ) (671(x)).
@ As the function ¢ is monotonic, we get mg, = mp and g, = My where

™D = E {g( YT)l{inftE[O,T] Yz>D}:|7 Ty = E[g(YT)]‘{SUPze[O,T] Ye<U} |
g(x) =fop 1 (x), D= ¢(Bp) and U = ¢(By).
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General Framework

@ In the sequel, we consider the general setting given in [Alfonsi 2013]
and let (Y:)r>o denote the SDE defined on | = (0, +00) solution to

dY, = L(Yy)dt +vdW,, t>0, Yo=yel, withyeR*, (2

where L: | — R s C?, s.t.

Fr>0, Vy,y €ly <y L) - Lly) <Kl —y) (3)
In addition, for an arbitrary point d € I, we assume that
x oy 2 Y
v(x) = /d /d exp ( — ?/z L(§)d§) dzdy satisfies XIi)r’g+ v(x) = +o0.

(H1)
@ By the Feller's test (3) and (H1) ensure that the SDE (2) admits a

unique strong solution (Y;)s>o on (0, +00).
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The drift implicit Euler scheme

o For t; = %, 0 < i < n, we consider the drift implicit continuous

scheme introduced in [Alfonsi 2013] ,

Yo=Y+ LYt~ t) +9(We — W), t € [tr, tia] (4)
Yon =Yy

is well defined and for all t € [0, T], ¥ € I = (0, +00).

@ If in addition we assume that for p > 1, we have

E[(/OTW(YH)L(YLJ) + %ZL"(YU)MU)F} < oo and E[(/{)T(L'(Yu))zdu)g} < 0.
(H2)

then by [Alfonsi 2013], there exists a positive constant K} such that

E» |: sup \\A/t"— Y:P| < Kp

T
te0,T] n’
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The interpolated drift implicit scheme for Brownian bridge

@ For our purpose, we rather focus on a slightly different interpolated
version. For t; = %, 0<i<n,

~~n n

Yo+ LY

)% +7(Wti+1 - Wt/‘)7

tiy1

Vo~ .

tit1

and then introduce the following interpolated drift implicit scheme
Y=Y+ LYy )t —t) + (W, = W,), forte[titia] (6)

@ The main advantages of this Brownian interpolation is that it preserves

the rate of strong convergence of the original drift implicit scheme (4)

and allows an easy use of of the Brownian bridge technique for pricing
Barrier options.
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Strong convergence rate

For this aim, we strengthen our assumption on L as follows:

L: 1 — Ris C? such that: L is decreasing on (0, A) for A > 0,
and L' satisfies L), > 0 s.t. Vy € (A, 00), [L'(y)] < LL. (H3)

Assume that conditions (H2) and (H3) hold true for a given p > 1 and

with Ly < 5%. Then, there exists a constant K, > 0 such that

S|~

E:| sup V] - YiP| <Ky
te[0,T]

Corollary 2

Under assumptions of Theorem 1, if in addition

Ja > 0such that Yy €1, ylL(y) < a(l+ |y|?) (H4)

then E[ sup [Y}]P] < cc.
0<t<T
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Brownian bridge and drift implicit scheme

@ The above barrier option prices can be approximated by

n—1 n—1
Tp 1= [g(YT)H {infecge i Ve >D}] and 7y _E[g(YT) H {supeciy iy q) Ve <u}]'

i=0 i=0

@ To get more accurate approximations, we use the Brownian bridge
technique. For x € R, (x). stands for max(x, 0).

Proposition 1
Under the above notation, for h = % we have

(Y - D) (Y,

Tp = [ T)H(]- ]7,' —eXP< ~h '+1_D)+)

Ty=E [ H(l ]7 *exp(72(uiy )ZS/{ Yt’“) )

V.

The Brownian bridge technic goes back to [Baldi 1995] and [Gobet 2009]
for related refinements.
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The interpolated drift implicit Euler MLMC method

Y
@ We consider the drift implicit scheme (Yf Jo<i<o¢ given in (5) using a
time step hy = 27T for £ € {0, ..., L}, with L = log n/log 2, where n is
the finest time step number.

Y
@ Let (Y} )o<t<T denote the Brownian interpolation of the drift implicit
scheme defined in (6) with time step hy. For

21 .
= . 2t 0 iT
Py:=g(Y7) g I{S“Pfe[t{f,t;’f+117fz<“}7 where t; = o for £ € {0, ..., L},
(7)
we have
S— L S— —
Tu =E[P] =E[Po] + Z]E[Pe — Poa], (8)
(=1
. n—1
where Ty (= E {g(YT) H l{supte[th]Vku}] .
i=0
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Brownian bridge for the MLMC method

@ Applying Proposition 1 yields

2f-1
—f —f -2 N
E[P;] = E[P,], where P, : = g(Y7) [[ (1 =57 ) with (9)
i=0
-2 -2
Y (2(7/{ - th )+ (U — erﬂ)+>
. = ex .
@ Now, following the conditional MC proposed by [Giles et al. 2019] we
get
£—1 211 £—1 £—1 0—1
2" o2 o2 o2t
E[Pea] =Elg(V7 ) H {sup,_ -1 ¢—1 7%271<Z/{}|Yti[717 Yt§i+1’yfie+711]] -
i=0 telt; ot ]
[ (*22—1)2[1_1‘[71 [1 1 ‘i2(—1 —ot—1 —2@—1}]
Eig(YT E -1 -1 Yi-1,Ye Yoe-1]],
Pl {SuPtE[rizfl.tle] Yi <u} {SquEItf,vHvt,-e[ll] P <u} 2i+1 tin

o2t . .
where the coarse scheme Ytze_+1 is computed using our Brownian
interpolation scheme (6) that is

o1 g1 2tt .1
Ytzeiﬂ = th@—l + L(Ytﬁ:ll)(t2i+1 -t )+ ’V(W,_Lzz/_Jrl - th_zq).
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Brownian bridge for the MLMC method (continued)

_ se-1 -1

@ Thus, we rewrite su Y, andsu Y as
! pteltle ! t2+ ] ptG[ 21+1 rlikll t

follows

-1 __pt-1 He—1 y
sup Y, =Ygty sup We — W, 1+7L(Y[ 1)(tt,_1)>7

(el a5 BT
1, 2t , T N v v
Wy, = Wy + - L(Y i —677) = 5 Vit — Yoo
and
_ot-1  __gt-1 1 ot 4
sup Yy =Yg +7 sup (Wr — Wy + —L(Ye)(t - téi+1)> ,
S ﬁ:ll] te[té R t37.] !
1 (et ettt
th_zir—ll - Wtfl. + - L(Y o 1)( 1+1 t21+1) ; <Yti£+11 o Yt2£i+1) ’
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Brownian bridge for the MLMC method (continued)

Then, using the Girsanov theorem, we get

— —c —c —2t-1 21 -1 _opt—1
E[P#l} = E[Peq]a where Py,_; i =g(Y1 ) (1- Pi1 )(1 - Pi2 )
i=0
with
—1
-1 (U Yy 1) (u Yt )+
p,21 —exp< =h 2it1 )’
1’ 1
AUV U~ Vi)
Pi 2 exp ( th )a
which can be rewritten as
o 21 o U -V U -YE )
B .V 2t e i i1
Piy=g(Y7 ) [[(-p ) with B —eXp( ~2h )

(10)
ﬁ 1
where the coarse scheme Ytz evaluated over the finest time grid is

computed using the Brownian interpolation scheme (6).
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Brownian bridge for the MLMC method (continued)

@ Thus, the improved MLMC method approximates 7, by
1 N L
— — —=cC
**Z%,k*‘Z*Z(PM—Pz—Lk)a (11)
No = = Neio

where the condition EPZ_l] =E[P,_,] is satisfied.

@ Similarly, the improved MLMC method approximates 7p by

No L
/\1/0 Z Qg kKt Z ,\1/13 Z (Qz K 521,0» (12)
=1

where
I e —2(V4 — D), (Y, — D),
Q. =g(Y7T) H (1 —6,? ) with 6,? = exp ( —h; i+1 )
’:;_1 -2t 20t
[RE= g(Vzrz_l) [Ja- 7 )with @ =exp (_2(th - 72,7: Y = D)+)
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Extreme path events

For p > 1, assumption (H2) is valid and sup E[|L(Yf)|p} < 0. (H2)
te[0,T]

Lemma 3

Assume that conditions (H2), (H3) and (H4) are satisfied for a given p > 1
and 0 < L < ﬁ, with hy = 27°T sufficiently small. Let n € (0,1), then

ot __~f—1
P(max( sup (|Yeel, Ve, IV 1)) >h;”) = o(h])

0<i<2t

ot __t—1 Y __nf—1
P (max( sup (Ve — Vel [V = Ve 1,[Vee =V 1)) > hi") = o(hf)

0<i<2f

th
sup P </l LY. ds > hé’?) = o(h{) forall 0 < q < pn,and
t:

0<i<2?

1_
sup P sup |[Wi—W.|>hZ "] =o(hl), forall q>0.
t! ‘ %

0<i<2¢t teftf,tf ]
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The drift implicit Euler MLMC analysis

Theorem 4

Let g denote a payoff function satisfying : 3C > 0 s.t. Vx,y > 0 and
S R+

lg(x) —g(y)| < Clx —y|(1+ x| + |y|") and |g(x)| < C(1+ |X|”+(11)é)

Moreover, assume that conditions (H2), (H3) and (H ) are satisfied for
2

p > w, with § € (0,1/2) and 0 < L), < 5&-, with

hy =27¢ T sufficiently small.

If in addition inficjo 1) Yr (resp. supicpo 7 Yt) has a bounded density in
the neighborhood of the barrier D (resp. U), then the MLMC estimator
Qp given by (12) (resp. P given by (11) ) for the D-O (resp. U-O)
barrier option satisfies

Val“( Qg) = (h%+5) (I‘eSp.V&I‘(FE — FZ) — O(hf‘s)),
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Time complexity analysis

o Combining the complexity theorem in [Giles 2008] with the above
result, we deduce that for any § € (0, %) the MLMC estimators Qp and
Py reach the optimal time complexity O(e72), for a given precision

e > 0, and behave like an unbiased Monte Carlo estimator.

@ Taking 0 close to % achieves a smaller variance of the difference

between the finer and coarse approximations which is of order O(hf)
with 3 close to % similar to the case of diffusion with Lipschitz
coefficients studied in [Giles et al. 2019], but clearly leads to very

restrictive conditions on the finiteness of the moments of (Y;).cpo, 7] and
(Ytn)te[o,T]-
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Sketch of the proof

o First event A;We consider any of the extreme path events given in
Lemma 3. By Cauchy-Schwarz inequality we get

E[(Qf - @7)°1a] < 2v2 (E}(Q0)] + E}[(@Q)*]) V/PlALL
Then, we use Lemma 3 to get that

E[(@Z —Q,)%14,] = o(h?) for all 0 < g < p.

@ Second event A, corresponds to the non-extreme paths satisfying

| inf Ve~ D| > hy? "% for € (0,1/2(1 + €)) with & > 0.
te(0,

’ :
=> We prove that for hy sufficiently small [[2,*(1 — @2 ) and

H?igl(l —6,2[71) are both equal to 1 4 o(h,?) for all a > 0.
Consequently, we deduce that

E[(@; - 6;)21/\2] = O(hEQ(l—n(1+y))).
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Sketch of the proof
° ird event A3 corresponds to the rest of the non extreme paths.

=> We prove

201 ) 2f—1 oy
[Ta-a)-J[a-a )
i=0 i=0

Therefore, as we work on the non-extreme paths events, we deduce that
2

— O(hy—210+2)),

21 21

YT)H(l— g(YT>H —g'h

< C~hel—61'](1+5)—2nu7

Q) — Q52 =

BI(Q — Q1) 1a,] = O(h 9200 X B(] inf Yo~ D| < b b1+
— O(hé%777](1+5)727]1/)

=>» we choose ¢ =§ and n = which yields

m
E[(Q) — Q7)*1a] = O(h™*?) and E[(Q} — Q})?14,] = O(H'**).
o Finally, for the first event, we choose g = 2(1 + 0) to guarantee that
E[(Q} —Q;)?14,] = O(h**%) which is satisfied as soon as
_ la+ 6) +4(1+ 8w
=0
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Application to the CIR model

@ we consider the problem of pricing D-O and U-O barrier options

D = E[f(XT)l{inftE[O,T] Xt>’D}} and Ty = ]E{f(XT)l{SUPte[o,T] Xt<u}},

where f is a Lipschitz payoff function with Lipschitz constant [f]ii, and
(Xt)o<t<T denotes the Cox-Ingersoll-Ross (CIR) process solution to

dX; = (a — kXe)dt + o/ XedWey, Xo=x>0 (14)
with a>0%/2, Kk €R, 0 >0, Xo = x > 0.

o Applying the Lamperti transformation, the process (Y;)o<i<T given by
Y: = /X; satisfies

dYt = L( Yt)dt + ’ydWh YO = \/;(7 (15)
2
—02/4
where L(y) = 3270/ — gy and v = %.
y

@ Thus, for g: x € R — g(x) = f(x?) we get

D = E[g(YT)l{infte[O,T] vi>vpy| and my =R g(YT)l{SUPre[o,n IGSCHE
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e As a—02/4 >0, we easily check assumptions (H1) and (H4).

_(@a=d%/4) _k _

@ Besides, noticing that lim L'(y) = lim = —00, we
y—0+

y—07t 2y? 2
deduce that L is decreasing on (0, €) for € small enough. It is also globally
Lipschitz on [e, +00) so that assumption (H3) is satisfied with A = ¢ and

2
LA |a z7/4|+2

o To check (H2) it is enough to show that

sup B{IL LI + 1L + 1L () 4 1L(Y)P] < oo
tel0, T

which is clearly satisfied as soon as

_(2v3
sup ]E[Y;(4V3p)} = sup E[X, (QVQP)} < 0.
te[0,T] te[0,T]
Recalling that sup,¢o, T] E[X ] < o0 for all g > —% we easily conclude
that this holds when 02 < a and p <

302

o Consequently, for 6 € (0,1/2), if 32 >p> w > 18 then
Theorem 7 is valid provided that inf.cjo 7] Y: (resp. sup,cpo 77 Yt) has a
bounded density in the neighborhood of the barrier.
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Running maximum of the CIR process

@ Let us introduce firstly the confluent hypergeometric function
1F1(x, b, y) defined for all y, x e Cand b€ C\ {0,—1,—-2,---} by

1F1(x,b,y) = Z
where (x), = x(x 4+ 1)...(x + n — 1) stands for the Pochhammer symbol.

Let (X;)o<t<T denote the CIR process solution to (14). Then
Supcpo, 7] Xt has a continuous density on any compact set
K C (Xo, +00), given by

n|y7

1 +oo ) R
z € K = Pcoir Max(2) = 5 / e+ 4y 7)du
i
with
Hu,2) = 1F1((1 + iu)/k,2a/0%,26X0/0?)1 F1((1 + iu)/k + 1,2a/0? + 1,2Kz/0? )

a1F1((1 + iu)/k,2a/02, 2&2/(72)
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Running minimum of the CIR process

@ To do so, we introduce the Tricomi confluent hypergeometric function
U(a, b, z) defined for all a, z € C and b e C\ {£0,£1,+2,...} by

r(1-b) r(b—1)
NrM1+a-—>b) r(a)

@ Let us denote by 7x,;, :=inf{t > 0: X; = z} for 0 < z < Xp. By
[Chou and Lin 2006]

U(a, b,z) = 1Fi(a, b, z) + PR +a—b,2-b,z2).

U(s/k,2a/0?,2kX0/0?)

U(s/m.2a)0%, 2m2)07) "> 0

E[e” ™04 ] =

Theorem 6

The running minimum inf.c[o 11 X: has a continuous density on any
compact set K C (0, Xp), given by

+oo
z € K+ Pcir,Mmin(2) = %/ eI (u, z)du
with
D(u,z) = 2U((1 + iu)/k,2a/0?,25X0/0?)U((1 + iu) /K + 1,2a/0? + 1 2/42/02)

a2U((1 + iu)/k,2a/02, 2/-;2/02)2

= = =
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Numerical Tests

@ we consider the problem of pricing D-O and U-O barrier options
D = E{f(XT)l{infte[07T] Xt>D}} and my = E[f(XT)l{suptE[O)T] xt<u}}7
where the payoff function f(x) = e~ (x — K)...

o By the Lamperti transform we get

™D = E[g( YT)l{infre[o,T] Yt>\/5}:| and Ty = ]E|:g(YT)1{SUPre[O,T] Yt<\/Zj{}:|7
where g(x) = e (x? — K)4 and (Y¢):epo,7-

@ We consider our interpolated drift implicit scheme

A2
Y = Yt/ + (2)/7 2 t,+1> (t )+’Y(Wt - Wt/‘)7 fort € [tia tH—l]a

tiy1
Yo =+ Xo and v = %.

For n large enough, the positive solution is

— J@EEDE =T+ ((Wey — W) + V02 + (W — W) + Vo
2+n% '

tiyr —
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Numerical tests

o We take r =0.1, X, =100, a=0, k =—-0.1, c =25 and T = 0.5.
For the D-O option the strike is K = 95, and the barrier D = 90 and for

the U-O option the strike is K = 105 and the barrier &/ = 120.

@ The benchmark prices given in [Davydov and Linetsky 2001] for the

D-O (resp. U-O) option is 10.6013 (resp. 0.7734).

@ The performance of the improved MLMC is given in the tables and

figure below.
[ Accuracy | Price [ MLMC cost [ MC cost | Saving |
103 10.669 | 2.588 x 10% | 6.752 x 10™° [ 260.91
5x 1073 | 10.668 | 1.051 x 107 | 3.376 x 108 32.13
102 10.668 | 2.510 x 106 | 4.220 x 107 16.81
2x 1072 | 10.677 | 6.187 x 10° | 5.275 x 108 8.52

Table: MLMC complexity tests for D-O barrier option pricing of mp
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Numerical tests

[ Accuracy | Price [ MLMC cost | MC cost [ Saving |

1073 0.77200 | 4.674x10° [ 4.221x10% | 90.32
5x 1073 | 0.76026 | 1.571x10° | 2.11x10° | 13.44
102 0.77015 | 3.809 x 10* | 2.638 x 10° | 6.93
2x 1072 | 0.78168 | 1.463 x 10* | 6.596 x 10* | 4.51

Table: MLMC complexity tests for U-O barrier option pricing 7y

(

= {—— Monte_Carlo [ Monte_Carlo |
t I |-+~ MLMC |_—*- MLMC

10*

101

. SN s
H \ B ~
10 | L et
: T ==
T
10°* 1072 107% 1072
couracy & aceuracy €
(a) Approximation of mp (b) Approximation of

Figure: Comparison for the performances of MLMC vs classical MC algorithm

PR
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Application to the CEV model

@ For CEV process solution to
dXe = puXedt + o XZdWe, t2>0, . X9 >0, p€R anda>1
we consider the problem of pricing an U-O barrier option
H%QX = E[f(XT)l{Suptem,ﬂ Xf<D}} and antio’X =E f(XT)l{infte[o,TJ Xe>U}

f is a given Lipschitz function with Lipschitz constant [f]iip.
@ For o > 1, by Feller's test the solution (X;):c[o, 7] is positive.

@ So applying the Lamperti transformation, Y; = X}~ is well defined on
I = (0,400) and satisfies

dY, = L(Yy)dt +ydW,, Yo = X3
where L(y) = (1 — «) (uy - a%zyfl) and v = o(1 — «) and thus
I'I%—O,X = E[g(YT)l{infte[o.T] Y,>’D1*<’}} and HZ'O,X = E[g(YT)l{SUPte[O,T] yt<u1—o<}:|,

with g : x € R — f(xﬁ).
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Application to the CEV model

@ As lim L'(y)= lim (1 —a)(p+ oz%zy‘2) = —o00, we deduce that L
y—0+ y—0+

is decreasing on (0, €) for € > 0 small enough and it is clearly globally
Lipschitz on [e, +00) so that assumption (H3) is satisfied.

@ On the one hand, by 1t6's formula the process (Z;:)o<¢<7 given by

x—2a=1) )

Zy = a7 s a CIR process solution to
2(a71)
dZt = (a—/{Zt dt—O’\/ thWt,Zo 4( )2,

o’(2a—1)
4(a—1)
1

transformation we deduce that sup,co 71 E[Y;] < oo for g > f%.

and k = 2u(a — 1). Thanks to this second

with a =

@ On the other hand to check assumption (H2) it is enough to show that

sup E[|L/(Ye)L(Y:)[P + [L"(Ye)[P + L' (Y2)|BYP) + [L(Y2)[P] < o0
te[0,T]

which is satisfied if sup,cjo 1) E[ Y, (4v 3")] < 00. This condition is
satisfied when 4 < 5t2=3s (i.e. a € (1, ¢)) and p < go=5y.
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Corollary 7

o Fora > 1, let (Y;)r>o0 denotes the Lamperti transform of the CEV
process (X¢)t>o solution to

dY: = L(Yy)dt +vdW;, Yo = X3~

where L(y) = (1 — a) (ﬂy - a";yfl) and v =o(1 — ).

o letg: xeR— f(xﬁ) denotes the payoff function with f a
continuous Lipschitz function. Moreover, for § € (0,1/2), let us choose o
close enough to 1 s.t.

200—1 _ 14(1+6)?

28,
ba—1)  L1-5

If in addition inf.c[o, 1 Y: has a bounded density in the neighborhood of
the barrier D, then the MLMC estimator Qp given by (12) for the D-O
barrier option satisfies

Var(Q, — Q) = O(hh+).
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Application to the CEV model

Remark.
@ One can also consider the CEV process for a € (1, 1) solution to
dX; = (a — kX;)dt + o Y dWs, with Xp > 0,2 > 0.

It can be easily checked that for a > 0 this SDE is well defined on
I = (0, +00).

@ However, all the conditions of Theorem 4 apply except the condition
that infic(o, 77 Xt or sup,¢jo, 77 Xt admits a continuous density in the
neighborhood of the barrier seems to be a challenging problem.
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Running maximum of the CEV process

@ Let us denote by Tx,, := inf{t > 0: X; = z} the first time that the
CEV process (X;)¢>o starting at Xp hits the level z > Xj.

e From [Jeanblanc, Yor and Chesney 2009], the Laplace transform of the
hitting time 7x,¢, is given by

e Xo\ A+3 € o Lo\ Win(eXy )
Ele X"T’]:(?) o (06— )t Gy

with € = sign(uB), n= 75, k= e( + 45) 2\#6\ and W , the

Whittaker's function Wk7,,( ) =y™2eY2U(n— k + 1.2n+1,y),

where U denotes the confluent hypergeometric function of second kind
|1

and S =a—1 and c:@.
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Running maximum of the CEV process

Theorem 8

Let (X;)o<t<T denotes the CEV process solution to (26). Then
Supyeo, 7] Xt has a continuous density on any compact set

K C (Xo, +00), given by

1 +o00 . "
z € K Pcey, max(2) = —/ e(1+'“)T<D(z, u)du,

2 J—ss
with
1+iu 1 —2p 1+iu i —28
&)(27u):_52_2ﬁ_1U(2w,1+ 2B761X9 )U(IM +1,2+4 %, cz )’ or > 0
7 UG 1+ 3y 2 7
and
A 2 1 1
&(z,u) = —cz72F~! (% = ;)
) -3 ) B
y U+ 55 — 354,14+ 35,0 5)U(2+§ — 58,24 3, cz72P)
R |

for pp < 0.
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Running minimum of the CEV process

@ Let us denote by 7x,, := inf{t > 0 : X; = z} the first time that the
CEV process (X;)¢>o starting at Xp hits the level 0 < z < Xj.

@ By [Jeanblanc, Yor and Chesney 2009] the Laplace transform of the
hitting time 7x,,, := inf{t > 0: X; = z} is given by

Xo\ B+3 Mic.n(cXs 2P
e - <7°> fon (067 -2 ) e
k,n

with € =sign(p3), n = 35, k= 6( + 45) 5 sw and the Whittaker
function
Min(y) =y e 211"_1(I7—k—i- ,2n+1,y),

where 1 F; denotes the confluent hypergeometrlc function of the first kind
with 5 =a — 1 and C:ﬂMUL'
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Running minimum of the CEV process

Theorem 9

Let (X;)o<t<T denotes the CEV process solution to (26). Then
infecjo,7) Xt has a continuous density on any compact set K C (0, Xop),
given by

1 [t NN
z € K = Pcev, min(2) / AT (2, u)du,

T on ) o
with
14i 1 —28 14i 1 -2
U(z,u) = cz 201 1F1(2u’§71+ﬁ,cX0- JFi(gg + 1,2+ 55,¢2 ’) for > @
p(l+ 55) TlE" NI M
and
@ 2 1
\U(z,u):cz_zﬁ_l 5, =
L+iv p(l+55)
. 3 . _
9 1F1(1+ﬁ—§:’[§’,1+$,cxo B)1F1(2+i—%,2+ i,cz 25) or d < 0
L gy — el g @) ’
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Numerical testes

@ we used our interpolated drift implicit scheme

o _ 2
Yi=Yi+(1-0) <#Y:,-+1 a2;:n> (t—t;) +y(We = Wy), fort € [t;, t;i1[[0< i< n
tip1

Yo = Xo!17%, and v = o(1 — a).
@ For n large enough, the positive solution to the above implicit scheme
is explicit and given by
v \/20204(a — D@+ pla = 1)) E + (W, — Wey) + V)2 +9(Wey, — W) + Yy
tit1 2_,'_2“(0[_1)% :
@ We choose a = 1.2, Xp =100, 4 =0.1, 0 = 0.2, T = 1. The payoff

function g(x) = e*rT(xﬁ — K) is a discounted call function with
r = 0.1. For the U-O option the strike is K = 90, and the barrier
D = 150. For the D-O option the strike is K = 100 and the barrier

U =90.
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The tables and the figures below confirm the high performance of the

improved MLMC.

Accuracy | Price | MLMC cost | MCcost [ Saving |
10—* 3.0390 | 8.226 x 10° | 7.34 x 10™3 [ 8922.33
5x107* | 3.0391 | 3.17 x 108 3.67 x 101 | 1155.67
1073 3.041 | 7.436 x 107 | 4.587 x 10'° | 616.91
1072 | 3.0452 | 6.539 x 10° | 5.734 x 10" | 87.69
Table: MLMC complexity tests for the U-O barrier option pricing of I'I%O‘X

Accuracy [ Price | MLMC cost | MC cost [ Saving |

5x10~% [ 11.102 | 6.483x10° 1.642x 10 | 2532.83
103 11.103 | 1.608 x 109 | 2.053 x 1012 | 1276.66

5x 1073 | 11.106 | 6.379x107 2.053x 1010 321.77
10—2 11.094 | 1.587 x 107 | 2.566 x 10° 161.69

Table: MLMC complexity tests for the D-O barrier option pricing of

D-0,X
rll/[

Numerical tests
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Numerical tests

108 — ———r—
? =+ Monte_ |[+ Monte_Carlo
|-+ MLMC = [-+- MLMC
™~ 108
10°
— =
g B
10%
10"
“ ====
10- 107* 107 102
N U-0,X A D-0,X
(a) Approximation of M5~ (b) Approximation of M, ™"

u

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CEV model
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