
Department of Biosystems Science
and Engineering

Towards a Deep Learning Method for
computing summary statistics of the filtering
equation in the Stochastic Reaction Networks
Setting
Elena Sofia D’Ambrosio, PhD Student in the Khammash Lab

Joint work with: Zhou Fang, Nicolo Rossi, Ankit Gupta, Mustafa Khammash

Stochastic Filtering in Biology

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

0

5

10

X(t) = (X1(t), . . , Xd(t))

Observed
Species

Y(t) = (Y1(t), . . , Yr(t))

Hidden Species

0 0.2 0.4 0.6 0.8 1
t (s)

0

2

4

6

8

10

Fl
uo

re
sc

en
t P

ro
te

in
 C

op
y

Nu
m

be
r

Observations

Mean estimate to unobserved species

E(g(X(t)) |Y(s) = y(s), 0 ≤ s ≤ t)

π(t, x) = P(X(t) = x |Y(s) = y(s), 0 ≤ s ≤ t)
or

H
id

de
n

sp
ec

ie
s

co
nd

iti
on

al
 m

ea
n

Living Cell

Applicability:
• to unravel cellular functions not fully understood
• inference purposes
• design feedback controllers

Department of Biosystems Science
and Engineering MCM23 1/20

Drawbacks of the current methods: Kalman Filter

M P

0 0.2 0.4 0.6 0.8

t (s)

0

0.2

0.4
10

2
Observation Process

0 0.2 0.4 0.6 0.8

t (s)

-0.2

0

0.2
10

2
Hidden Process

Exact

Particle Filter

Kalman

Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations

Kalman Filter (– –):
• It requires linearity of the underlying model
• Not accurate at estimating low copy number regimes: the hidden process trajectory is not even

included in the standard deviation bandwidth
Department of Biosystems Science
and Engineering MCM23 2/20

Drawbacks of the current methods: Particle Filter (Rathinam, JCP 2021)

M P

Figure: Observation and Hidden Process Trajectories and
Conditional Mean and Standard Deviations Estimations

Particle Filter (—-):
• Accurate at estimating summary statistics, but not probability distributions, in particular rare

events probabilities
Department of Biosystems Science
and Engineering MCM23 3/20

Need for New Filters for the Stochastic Reaction Networks Setting

Goal: Infer Hidden cellular states based on partial observations accurately
and efficiently

Current Issues: The existing methods fail due to non-linearity,
high-dimensionality, etc.

Our Solution: Provide with computational methods to compute the
conditional distribution very accurately and efficiently

Department of Biosystems Science
and Engineering MCM23 4/20

Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species
• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0

Department of Biosystems Science
and Engineering MCM23 5/20

Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species
• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0

Department of Biosystems Science
and Engineering MCM23 5/20

Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species
• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0

Department of Biosystems Science
and Engineering MCM23 5/20

Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species

• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0

Department of Biosystems Science
and Engineering MCM23 5/20

Filtering Problem Formulation in the Stochastic Reaction Networks Setting

• Consider an intracellular chemical reacting system that has n species (S1, . . . , Sn) and M
reactions:

n∑
i=1

ξikSi
ck−→

n∑
i=1

ξ′
ikSi, k = 1, . . . M,

• a1, a2, . . . aM the propensity functions and νk ≜ ξ′
k − ξk, k = 1, . . . , M , the stoichiometry vectors

• Consider a CTMC Z(t) ∈ Zn
≥0 associated with the reaction network

• We decompose the system into two sub-networks Z(t) = (X(t), Y(t)):
– X(t) ∈ X ⊆ Zn1

≥0 hidden species copy numbers
– Y(t) ∈ Zn2

≥0 (with n2 = n − n1) observed species
• We can write the Chemical Master Equation (CME):

dp(t, z)
dt

=
M∑

j=1

aj(z − νj)p(t, z − νj) − p(t, z)
M∑

j=1

aj(z) z ∈ Zn, t > 0

Department of Biosystems Science
and Engineering MCM23 5/20

Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

• We can define:
– n1 components to define ν′

k, and ν′′
k with the remaining n2 components

– O = {i = 1, . . . , M |ν′′
i ̸= 0} and Oc = U

– Ok = {i ∈ O|ν′′
i = y(tk) − y(t−

k)},

• Our goal is to compute π(t, x) ≜ P {X(t) = x|Y(s) = y(s), 0 ≤ s ≤ t} for any x ∈ Zn1
+ , and for

tk ≤ t ≤ tk+1:

π′(t, x) =
∑
j∈U

π(t, x − ν′
j)aj(x − ν′

j , y(tk)) −
∑
j∈U

π(t, x)aj(x, y(tk))

− π(t, x)

(
aO(x, y(tk)) −

∑
x′

aO(x′, y(tk))π(t, x′)

)
∀x ∈ Zn1

+ ,

where aO(x, y(tk)) =
∑

j∈O aj(x, y(tk)).
• At the jump times tk, k = 1, . . .:

π(tk, x) =

∑
l∈Ok

al(x − ν′
l , y(tk−1)π(t−

k
, x − ν′

l)∑
x′

∑
l∈Ok

al(x′, y(tk−1))π(t−
k

, x′)
∀x ∈ Zn1

+

Department of Biosystems Science
and Engineering MCM23 6/20

Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

• We can define:
– n1 components to define ν′

k, and ν′′
k with the remaining n2 components

– O = {i = 1, . . . , M |ν′′
i ̸= 0} and Oc = U

– Ok = {i ∈ O|ν′′
i = y(tk) − y(t−

k)},
• Our goal is to compute π(t, x) ≜ P {X(t) = x|Y(s) = y(s), 0 ≤ s ≤ t} for any x ∈ Zn1

+ , and for
tk ≤ t ≤ tk+1:

π′(t, x) =
∑
j∈U

π(t, x − ν′
j)aj(x − ν′

j , y(tk)) −
∑
j∈U

π(t, x)aj(x, y(tk))

− π(t, x)

(
aO(x, y(tk)) −

∑
x′

aO(x′, y(tk))π(t, x′)

)
∀x ∈ Zn1

+ ,

where aO(x, y(tk)) =
∑

j∈O aj(x, y(tk)).

• At the jump times tk, k = 1, . . .:

π(tk, x) =

∑
l∈Ok

al(x − ν′
l , y(tk−1)π(t−

k
, x − ν′

l)∑
x′

∑
l∈Ok

al(x′, y(tk−1))π(t−
k

, x′)
∀x ∈ Zn1

+

Department of Biosystems Science
and Engineering MCM23 6/20

Filtering Equation for the Noise-Free Case (Kushner-Stratonovich)

• We can define:
– n1 components to define ν′

k, and ν′′
k with the remaining n2 components

– O = {i = 1, . . . , M |ν′′
i ̸= 0} and Oc = U

– Ok = {i ∈ O|ν′′
i = y(tk) − y(t−

k)},
• Our goal is to compute π(t, x) ≜ P {X(t) = x|Y(s) = y(s), 0 ≤ s ≤ t} for any x ∈ Zn1

+ , and for
tk ≤ t ≤ tk+1:

π′(t, x) =
∑
j∈U

π(t, x − ν′
j)aj(x − ν′

j , y(tk)) −
∑
j∈U

π(t, x)aj(x, y(tk))

− π(t, x)

(
aO(x, y(tk)) −

∑
x′

aO(x′, y(tk))π(t, x′)

)
∀x ∈ Zn1

+ ,

where aO(x, y(tk)) =
∑

j∈O aj(x, y(tk)).
• At the jump times tk, k = 1, . . .:

π(tk, x) =

∑
l∈Ok

al(x − ν′
l , y(tk−1)π(t−

k
, x − ν′

l)∑
x′

∑
l∈Ok

al(x′, y(tk−1))π(t−
k

, x′)
∀x ∈ Zn1

+

Department of Biosystems Science
and Engineering MCM23 6/20

Similarities with the CME and challenges inherent with the Filtering Equation

Methods for solving the CME :
• Finite State Projection (Munsky et al., 2006, J.

Chem. Phys.)
• MonteCarlo Methods (SSA, Next Reaction

Method) (Gillespie and Petzold J. Chem.
Phys. 2009, Anderson et al. J. Chem. Phys.
2006)

• Moment Closure Methods
• Machine Learning Algorithms (DeepCME)

(Gupta et al., PLOS CB, 2022)
• Hybrid Methods (Fang et al. 2022 bioRxiv, J

Hasenauer et al. J Math. Biol. 2014, Duso et
al. J. Chem. Phys. 2018)

Methods for solving the filtering equation:
• Filtered Finite State Projection (FFSP)

(Completed work, D’Ambrosio et al. 2022,
bioRxiv)1

• Particle Filtering Algorithms (Fang et al.
SIAM 2023, Rathinam et al., J. Chem. Phys.
2021)

• Moment Closure Methods (Zechner et al.,
CMSB 2022)

• Machine Learning (In Progress)

1Elena Sofia D’Ambrosio et al. “Filtered finite state projection method for the analysis and
estimation of stochastic biochemical reaction networks”. In: bioRxiv (2022).

Department of Biosystems Science
and Engineering MCM23 7/20

Similarities with the CME and challenges inherent with the Filtering Equation

Methods for solving the CME :
• Finite State Projection (Munsky et al., 2006, J.

Chem. Phys.)
• MonteCarlo Methods (SSA, Next Reaction

Method) (Gillespie and Petzold J. Chem.
Phys. 2009, Anderson et al. J. Chem. Phys.
2006)

• Moment Closure Methods
• Machine Learning Algorithms (DeepCME)

(Gupta et al., PLOS CB, 2022)
• Hybrid Methods (Fang et al. 2022 bioRxiv, J

Hasenauer et al. J Math. Biol. 2014, Duso et
al. J. Chem. Phys. 2018)

Methods for solving the filtering equation:
• Filtered Finite State Projection (FFSP)

(Completed work, D’Ambrosio et al. 2022,
bioRxiv)1

• Particle Filtering Algorithms (Fang et al.
SIAM 2023, Rathinam et al., J. Chem. Phys.
2021)

• Moment Closure Methods (Zechner et al.,
CMSB 2022)

• Machine Learning (In Progress)

1D’Ambrosio et al., “Filtered finite state projection method for the analysis and estimation of
stochastic biochemical reaction networks”.

Department of Biosystems Science
and Engineering MCM23 7/20

How to address the challenges inherent with the filtering equation

Nonlinearity: ρ(t, x) ≜ π(t, x) exp
(

−
∫ t

max{tk|tk≤t}

[∑
x̃∈Z

n1
≥0

aO(x̃, Y(s))π(s, x̃)
]

ds
) Un-normalised

Distribution
satisfies

the Zakai Equation
For tk ≤ t < tk+1 and x ∈ Zn1 :

ρ′(t, x) =
∑
j∈U

ρ(t, x−ν′
j)aj(x−ν′

j , y(tk))−
∑
j∈U

ρ(t, x)aj(x, y(tk))−ρ(t, x)aO(x, y(tk)) ∀x ∈ Zn1
+

For t = tk+1 and x ∈ Zn1 : ρ(tk+1, x) =

∑
j∈Ok+1

aj (x−ν′
j ,Y(tk))ρ(t−

k+1,x−ν′
j)∑

x̃

∑
j∈Ok+1

aj (x̃,Y(tk))ρ(t−
k+1,x̃)

High dimensionality: ρFFSP(t, XP) = (ρFFSP(t, x1), . . . , ρFFSP(t, xP))⊤ finite-dimensional vector

Filtered Finite State Projection
ρ̇FFSP(t, XP) = AP (Y(tk))ρFFSP(t, XP)
∀k ∈ Z≥0 and ∀t ∈ [tk, tk+1)
ρFFSP(tk+1, XP) = APjump (Y(tk))ρFFSP(t−

k+1, XP)

Department of Biosystems Science
and Engineering MCM23 8/20

How to address the challenges inherent with the filtering equation

Nonlinearity: ρ(t, x) ≜ π(t, x) exp
(

−
∫ t

max{tk|tk≤t}

[∑
x̃∈Z

n1
≥0

aO(x̃, Y(s))π(s, x̃)
]

ds
) Un-normalised

Distribution
satisfies

the Zakai Equation
For tk ≤ t < tk+1 and x ∈ Zn1 :

ρ′(t, x) =
∑
j∈U

ρ(t, x−ν′
j)aj(x−ν′

j , y(tk))−
∑
j∈U

ρ(t, x)aj(x, y(tk))−ρ(t, x)aO(x, y(tk)) ∀x ∈ Zn1
+

For t = tk+1 and x ∈ Zn1 : ρ(tk+1, x) =

∑
j∈Ok+1

aj (x−ν′
j ,Y(tk))ρ(t−

k+1,x−ν′
j)∑

x̃

∑
j∈Ok+1

aj (x̃,Y(tk))ρ(t−
k+1,x̃)

High dimensionality: ρFFSP(t, XP) = (ρFFSP(t, x1), . . . , ρFFSP(t, xP))⊤ finite-dimensional vector

Filtered Finite State Projection
ρ̇FFSP(t, XP) = AP (Y(tk))ρFFSP(t, XP)
∀k ∈ Z≥0 and ∀t ∈ [tk, tk+1)
ρFFSP(tk+1, XP) = APjump (Y(tk))ρFFSP(t−

k+1, XP)

Department of Biosystems Science
and Engineering MCM23 8/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):

– Approximating the solution of the equation with the NN during the training by comparing
l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations

• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including
CME):

– Approximating the solution of the equation with the NN during the training by comparing
l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):

– Approximating the solution of the equation with the NN during the training by comparing
l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):
– Approximating the solution of the equation with the NN during the training by comparing

l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):
– Approximating the solution of the equation with the NN during the training by comparing

l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):
– Approximating the solution of the equation with the NN during the training by comparing

l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Motivation: Real-Time Estimations of Cellular States

• FFSP provides accurate estimations (benchmark for validation) but suffers from slow
computational speed

• Objective: Harness the computational power of ML for real-time estimations
• Deep Learning Main Approaches for filtering and high dimensional ODEs, PDEs (including

CME):
– Approximating the solution of the equation with the NN during the training by comparing

l.h.s. and r.h.s-Lu et al. 2021, Tang et al. 2023

– Reinforcement Learning to solve a Kolmogorov Backward Equation based on simulation
data-Han et al. 2018, Gupta et al. 2021, Crisan et al. 2022, Our Approach

– Reconstruction of the dynamics such that the hidden process becomes a controlled
process (by the observation) whose joint distribution coincides with the conditional
distribution (Feedback Dynamics)- Koeppl et al. 2021

– Learning the Mapping between the Observation Process and the Conditional Estimator
through a DNN, (Deep Filtering)-Ghosh et al. 2022, Zhang et al. 2020, Bishop et al. 2023

Department of Biosystems Science
and Engineering MCM23 9/20

Extending the DeepCME approach to solve the noise-free filtering equation

• Let Z(t) ∈ Z ⊆ Zn
≥0 be the state of a CTMC and Z(0) = z0

• In the DeepCME , the goal is to compute

E(g(Z(t))) =
∑
x∈Z

g(z)p(t, z)

where g is a suitable real-valued function, typically called output function.
• Given the filtration generated by (Z(t))t≥0, we can define a martingale in the interval [0, T]:

Vg(t, Z(t)) = E(g(Z(T))|Z(t)), such that Vg(0, z0) = E(g(Z(T)))

• Vg satisfies this ’almost sure’ relationship:

Vg(T, Z(T)) = Vg(0, Z(0)) +
M∑

k=1

∫ T

0
∆kVg(t, Z(t))dR̃k(t).

where for each reaction channel k = 1, . . . , M , ∆kVg(t, x) := Vg(t, x + νk) − Vg(t, x) and
R̃k(t) := Yk

(∫ t

0 ak(X(s))ds
)

−
∫ t

0 ak(X(s))ds

Department of Biosystems Science
and Engineering MCM23 10/20

Extending the DeepCME approach to solve the noise-free filtering equation

• Let Z(t) ∈ Z ⊆ Zn
≥0 be the state of a CTMC and Z(0) = z0

• In the DeepCME , the goal is to compute

E(g(Z(t))) =
∑
x∈Z

g(z)p(t, z)

where g is a suitable real-valued function, typically called output function.

• Given the filtration generated by (Z(t))t≥0, we can define a martingale in the interval [0, T]:

Vg(t, Z(t)) = E(g(Z(T))|Z(t)), such that Vg(0, z0) = E(g(Z(T)))

• Vg satisfies this ’almost sure’ relationship:

Vg(T, Z(T)) = Vg(0, Z(0)) +
M∑

k=1

∫ T

0
∆kVg(t, Z(t))dR̃k(t).

where for each reaction channel k = 1, . . . , M , ∆kVg(t, x) := Vg(t, x + νk) − Vg(t, x) and
R̃k(t) := Yk

(∫ t

0 ak(X(s))ds
)

−
∫ t

0 ak(X(s))ds

Department of Biosystems Science
and Engineering MCM23 10/20

Extending the DeepCME approach to solve the noise-free filtering equation

• Let Z(t) ∈ Z ⊆ Zn
≥0 be the state of a CTMC and Z(0) = z0

• In the DeepCME , the goal is to compute

E(g(Z(t))) =
∑
x∈Z

g(z)p(t, z)

where g is a suitable real-valued function, typically called output function.
• Given the filtration generated by (Z(t))t≥0, we can define a martingale in the interval [0, T]:

Vg(t, Z(t)) = E(g(Z(T))|Z(t)), such that Vg(0, z0) = E(g(Z(T)))

• Vg satisfies this ’almost sure’ relationship:

Vg(T, Z(T)) = Vg(0, Z(0)) +
M∑

k=1

∫ T

0
∆kVg(t, Z(t))dR̃k(t).

where for each reaction channel k = 1, . . . , M , ∆kVg(t, x) := Vg(t, x + νk) − Vg(t, x) and
R̃k(t) := Yk

(∫ t

0 ak(X(s))ds
)

−
∫ t

0 ak(X(s))ds

Department of Biosystems Science
and Engineering MCM23 10/20

Extending the DeepCME approach to solve the noise-free filtering equation

• Let Z(t) ∈ Z ⊆ Zn
≥0 be the state of a CTMC and Z(0) = z0

• In the DeepCME , the goal is to compute

E(g(Z(t))) =
∑
x∈Z

g(z)p(t, z)

where g is a suitable real-valued function, typically called output function.
• Given the filtration generated by (Z(t))t≥0, we can define a martingale in the interval [0, T]:

Vg(t, Z(t)) = E(g(Z(T))|Z(t)), such that Vg(0, z0) = E(g(Z(T)))

• Vg satisfies this ’almost sure’ relationship:

Vg(T, Z(T)) = Vg(0, Z(0)) +
M∑

k=1

∫ T

0
∆kVg(t, Z(t))dR̃k(t).

where for each reaction channel k = 1, . . . , M , ∆kVg(t, x) := Vg(t, x + νk) − Vg(t, x) and
R̃k(t) := Yk

(∫ t

0 ak(X(s))ds
)

−
∫ t

0 ak(X(s))ds

Department of Biosystems Science
and Engineering MCM23 10/20

Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T] (t, V(t), w(t)) = E

[
g(V(T))w(T)|(V(t), w(t), y[0,T])

]
s.t.:

E
[
g(X(T))|y[0,T]

]
=

E
[
Mg,y[0,T] (0, V(0), w(0))|y[0,T]

]
E
[
M1,y[0,T] (0, V(0), w(0))|y[0,T]

]
– Approximate Mg,y[0,T] (·) with a DNN and train it with an ’almost sure’ relationship

Department of Biosystems Science
and Engineering MCM23 11/20

Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T] (t, V(t), w(t)) = E

[
g(V(T))w(T)|(V(t), w(t), y[0,T])

]
s.t.:

E
[
g(X(T))|y[0,T]

]
=

E
[
Mg,y[0,T] (0, V(0), w(0))|y[0,T]

]
E
[
M1,y[0,T] (0, V(0), w(0))|y[0,T]

]
– Approximate Mg,y[0,T] (·) with a DNN and train it with an ’almost sure’ relationship

Department of Biosystems Science
and Engineering MCM23 11/20

Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T] (t, V(t), w(t)) = E

[
g(V(T))w(T)|(V(t), w(t), y[0,T])

]
s.t.:

E
[
g(X(T))|y[0,T]

]
=

E
[
Mg,y[0,T] (0, V(0), w(0))|y[0,T]

]
E
[
M1,y[0,T] (0, V(0), w(0))|y[0,T]

]
– Approximate Mg,y[0,T] (·) with a DNN and train it with an ’almost sure’ relationship

Department of Biosystems Science
and Engineering MCM23 11/20

Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T] (t, V(t), w(t)) = E

[
g(V(T))w(T)|(V(t), w(t), y[0,T])

]
s.t.:

E
[
g(X(T))|y[0,T]

]
=

E
[
Mg,y[0,T] (0, V(0), w(0))|y[0,T]

]
E
[
M1,y[0,T] (0, V(0), w(0))|y[0,T]

]
– Approximate Mg,y[0,T] (·) with a DNN and train it with an ’almost sure’ relationship

Department of Biosystems Science
and Engineering MCM23 11/20

Extending the DeepCME approach to solve the noise-free filtering equation

• A deep neural network (DNN) approximates the following map for z ∈ Z ⊆ Zn
≥0 and t ≥ 0:

(t, z) → Vg(t, z) = E(g(Z(T))|Z(t) = z)

• The DNN is trained according to the ’almost sure’ relationship

• Our setting: Z(t) = (X(t), Y(t)) ∈ Zn
≥0, where X(t) ∈ Zn1

≥0 hidden process and Y(t) ∈ Zn2
≥0

observed process

• Our Goal: Compute E
[
g(X(T))

∣∣YT

]
by finding a martingale representation

• How to achieve it:
– Define (V, w) and Mg,y[0,T] (t, V(t), w(t)) = E

[
g(V(T))w(T)|(V(t), w(t), y[0,T])

]
s.t.:

E
[
g(X(T))|y[0,T]

]
=

E
[
Mg,y[0,T] (0, V(0), w(0))|y[0,T]

]
E
[
M1,y[0,T] (0, V(0), w(0))|y[0,T]

]
– Approximate Mg,y[0,T] (·) with a DNN and train it with an ’almost sure’ relationship

Department of Biosystems Science
and Engineering MCM23 11/20

Definition of V and w over the whole time horizon (Rathinam et al. 2021)

• Under the non-explosivity condition, we can write V(t) and w(t) over the whole time horizon as
the following:

V(t) = V(0) +
∑
j∈U

Rj

(∫ t

0
aj (V(s), y(s)) ds

)
ν′

j +
m1∑
k=1

∫ t

0
sµk (s)dR̃µk (s)

w(t) = w(0) exp

{
−
∫ t

0
aO(V(s), y(s))ds +

m1∑
k=1

∫ t

0
ln Aµk (s)dR̃µk (s)

}
,

• where {sµk (t), Aµk (t)}t≥0 are two stochastic processes described for each t ≥ 0 and
k = 1, . . . , m1 by the following joint probability distribution:

P
(
(sµk (t), Aµk (t)) = (ν′

j , aj(V(t−), y(t−)))| (V(t−), y(t−))
)

=


1

|Õµk
(t−)| if j ∈ Õµk (t−)

0 otherwise

being Õµk (t) = {j ∈ Oµk |aj(V(t), y(t)) ̸= 0}.

Department of Biosystems Science
and Engineering MCM23 12/20

Definition of V and w over the whole time horizon (Rathinam et al. 2021)

• Under the non-explosivity condition, we can write V(t) and w(t) over the whole time horizon as
the following:

V(t) = V(0) +
∑
j∈U

Rj

(∫ t

0
aj (V(s), y(s)) ds

)
ν′

j +
m1∑
k=1

∫ t

0
sµk (s)dR̃µk (s)

w(t) = w(0) exp

{
−
∫ t

0
aO(V(s), y(s))ds +

m1∑
k=1

∫ t

0
ln Aµk (s)dR̃µk (s)

}
,

• where {sµk (t), Aµk (t)}t≥0 are two stochastic processes described for each t ≥ 0 and
k = 1, . . . , m1 by the following joint probability distribution:

P
(
(sµk (t), Aµk (t)) = (ν′

j , aj(V(t−), y(t−)))| (V(t−), y(t−))
)

=


1

|Õµk
(t−)| if j ∈ Õµk (t−)

0 otherwise

being Õµk (t) = {j ∈ Oµk |aj(V(t), y(t)) ̸= 0}.
Department of Biosystems Science
and Engineering MCM23 12/20

Schematic Representation of V and w

Z(t) = (X(t), Y(t)) ∈ ℤn≥0 X(t) ∈ 𝒳 ⊆ ℤn1≥0 hidden species Y(t) ∈ ℤn2≥0observed species
(V(t), w(t)) auxiliary processes V(t) ∈ ℤn1≥0mimicking the hidden dynamics w(t) ∈ ℝ≥0

t < t1

V(t0)
V(t−1)

V(t) = V(t0) + ∑
j∈𝒰

Rj (∫
t

0
aj(V(s), Y(t0))ds) ν′￼j

t01

t02

t01

w(t01) = w(t0)exp {−a𝒪(V(t0), Y(t0))(t01 − t0)}

t02

w(t02) = w(t02)exp {−a𝒪(V(t01), Y(t0))(t02 − t01)}

w(t0) = 1

w(t−1)

V(t1)
V(t−2)

 for j ∈ 𝒪1 = {j ∈ 𝒪 |ν′￼′￼j = Y(t1) − Y(t−1)}
with probability 1

|𝒪1 |

V(t1) = V(t−1) + ν′￼j
w(t1) = aj(V(t−1), Y(t0))w(t−1)

w(t1)

w(t−2)

Y(t0) Y(t1) Y(t2)

Department of Biosystems Science
and Engineering MCM23 13/20

Martingale Dynamics

Between the observation process jump times, tk ≤ t < tk+1, Mg,y satisfies:

dMg,y[0,T] (t, V(t), w(t)) = Mg,y[0,T] (t, V(t), w(t))
∑
j∈U

aj(V(t), y(tk))dt

−
∑
j∈U

Mg,y[0,T] (t, V(t) + ν′
j , w)aj(V(t), y(tk))dt

+
∑
j∈U

[
Mg,y[0,T] (t

−, V(t−) + ν′
j , w(t−)) − Mg,y[0,T] (t

−, V(t−), w(t−))
]

dRj(t)

Then Mg,y[0,T] satisfies the following dynamic backward equation for t = tk:

Mg,y[0,T] (t
−
k , V(t−

k), w(t−
k))

= 1
Õµl (t

−
k)

∑
j∈Õµl

(t−
k

)

Mg,y[0,T] (tk, V(t−
k) + ν′

j , aj(V(t−
k), y(tk−1))w(t−

k))

where µl = y(tk) − y(t−
k).

Department of Biosystems Science
and Engineering MCM23 14/20

Martingale Dynamics

Between the observation process jump times, tk ≤ t < tk+1, Mg,y satisfies:

dMg,y[0,T] (t, V(t), w(t)) = Mg,y[0,T] (t, V(t), w(t))
∑
j∈U

aj(V(t), y(tk))dt

−
∑
j∈U

Mg,y[0,T] (t, V(t) + ν′
j , w)aj(V(t), y(tk))dt

+
∑
j∈U

[
Mg,y[0,T] (t

−, V(t−) + ν′
j , w(t−)) − Mg,y[0,T] (t

−, V(t−), w(t−))
]

dRj(t)

Then Mg,y[0,T] satisfies the following dynamic backward equation for t = tk:

Mg,y[0,T] (t
−
k , V(t−

k), w(t−
k))

= 1
Õµl (t

−
k)

∑
j∈Õµl

(t−
k

)

Mg,y[0,T] (tk, V(t−
k) + ν′

j , aj(V(t−
k), y(tk−1))w(t−

k))

where µl = y(tk) − y(t−
k).

Department of Biosystems Science
and Engineering MCM23 14/20

Neural Network Structure

Inputs: ({tk}y
k∈ℕ ≤ T, y[0,T], t, V(t), w(t)) t0 ≤ t ≤ T

Encoder/Decoder

Embedding

FFNN

NNθ
g,y[0,T] ≈ Mg,y[0,T](t, V(t), w(t)) = 𝔼 [g(V(T))w(T) (V(t), w(t), y[0,T])]

Goal: compute 𝔼 [g(X(T)) |y[0,T]] for some bounded function g and T > 0

How : 𝔼 [g(X(T)) |y[0,T]] =
𝔼 [Mg,y[0,T](0,V(0), w(0) |y[0,T]]
𝔼 [M1,y[0,T](0,V(0), w(0) |y[0,T]]

Output:

and for any given trajectory of Y(s) = y(s) 0 ≤ s ≤ T, namely y[0,T]

Here g = (g, 1),where g : ℤn1≥0 → ℝM and 1 : ℤn1≥0 → ℝ constant one function

Department of Biosystems Science
and Engineering MCM23 15/20

Loss Function Definition

• Mg,y[0,T] satisfies between the observation process jump times tk ≤ t < tk+1 :

Mg,y[0,T] (t
−
k+1, V(t−

k+1), w(t−
k+1)) = Mg,y[0,T] (tk, V(tk), w(tk))

+
∑
l∈U

∫ t−
k+1

tk

AlMg,y[0,T] (s)dR̃l(s)

where Ajf(t, v, w) = f(t, v + ν′
j , w) − f(t, v, w) with f a bounded function in the domain of Aj

for j ∈ U and R̃j , for j ∈ U , are the centered Poisson processes.

• Main Idea: Creating the loss function according to the martingale dynamics between the jumps,
and adding the costraints at the jumps

• It is reasonable to think that the NNθ
g,y[0,T] minimising the loss function should be a good

approximation of Mg,y[0,T]

NNθ
g,y[0,T] ≈ Mg,y[0,T]

Department of Biosystems Science
and Engineering MCM23 16/20

Loss Function Definition

• Mg,y[0,T] satisfies between the observation process jump times tk ≤ t < tk+1 :

Mg,y[0,T] (t
−
k+1, V(t−

k+1), w(t−
k+1)) = Mg,y[0,T] (tk, V(tk), w(tk))

+
∑
l∈U

∫ t−
k+1

tk

AlMg,y[0,T] (s)dR̃l(s)

where Ajf(t, v, w) = f(t, v + ν′
j , w) − f(t, v, w) with f a bounded function in the domain of Aj

for j ∈ U and R̃j , for j ∈ U , are the centered Poisson processes.
• Main Idea: Creating the loss function according to the martingale dynamics between the jumps,

and adding the costraints at the jumps

• It is reasonable to think that the NNθ
g,y[0,T] minimising the loss function should be a good

approximation of Mg,y[0,T]

NNθ
g,y[0,T] ≈ Mg,y[0,T]

Department of Biosystems Science
and Engineering MCM23 16/20

Loss Function Definition

• Mg,y[0,T] satisfies between the observation process jump times tk ≤ t < tk+1 :

Mg,y[0,T] (t
−
k+1, V(t−

k+1), w(t−
k+1)) = Mg,y[0,T] (tk, V(tk), w(tk))

+
∑
l∈U

∫ t−
k+1

tk

AlMg,y[0,T] (s)dR̃l(s)

where Ajf(t, v, w) = f(t, v + ν′
j , w) − f(t, v, w) with f a bounded function in the domain of Aj

for j ∈ U and R̃j , for j ∈ U , are the centered Poisson processes.
• Main Idea: Creating the loss function according to the martingale dynamics between the jumps,

and adding the costraints at the jumps
• It is reasonable to think that the NNθ

g,y[0,T] minimising the loss function should be a good
approximation of Mg,y[0,T]

NNθ
g,y[0,T] ≈ Mg,y[0,T]

Department of Biosystems Science
and Engineering MCM23 16/20

Loss Function Definition

ℒ(NNθ
g,y[0,T], V[0,T], w[0,T], y[0,T]) := ∑

tk+1<T

NNθ
g,y[0,T]({tk}y

k∈ℕ, y[0,T], t−
k+1, V(t−

k+1), w(t−
k+1)) − NNθ

g,y[0,T]({tk}y
k∈ℕ, y[0,T], tk, V(tk), w(tk)) − ∑

l∈𝒰 ∫
t−
k+1

tk

AlNNθ
g,y[0,T](s)dR̃l(s)

Evolution of the martingale until the last jump before T

+ g(V(T))w(T)) − NNθ
g,y[0,T]({tk}y

k∈ℕ, y[0,T], tlast, V(tlast), w(tlast)) − ∑
l∈𝒰 ∫

T

tlast
AlNNθ

g,y[0,T](s)dR̃l(s)

Evolution of the martingale between the last jump and T

+∑
tk<T

NNθ
g,y[0,T]({tk}y

k∈ℕ, y[0,T], t−
k , V(t−

k), w(t−
k)) − 1

𝒪̃μl
(t−

k) ∑
j∈𝒪̃μl

(t−
k)

NNθ
g,y[0,T]({tk}y

k∈ℕ, y[0,T], tk, V(t−
k) + ν′￼j, aj(V(t−

k), y(tk−1))w(t−
k))

Evolution of the martingale at the jump times before T

Loss(θ) = 𝔼 [ℒ(NNθ
g,y[0,T], V[0,T], w[0,T], y[0,T])]

Department of Biosystems Science
and Engineering MCM23 17/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods

– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods

– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods

– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods
– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods
– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods
– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Loss Function Computation

• Training: Compute the loss function by sampling

Loss(θ) = E
[
E
[
L(NNθ

g,y[0,T] , V[0,T], w[0,T], y[0,T])
∣∣∣Y0:T

]]
where Y0:T is the filtration generated by the observation process from time t = 0 to t = T .

• How to practically compute the expectations in the loss function given the inaccessibility to all the
trajectories?

• Strategy: Monte-Carlo methods
– Fix a simulation of Y(t) for 0 ≤ t ≤ T , namely y[0,T]

– Sample q different trajectories of the processes (V, w): (V1, w1), (V2, w2) . . . , (Vq, wq)

– Compute L(NNθ, V[0,T], w[0,T], y[0,T]) for each sampled (V, w) and compute
E
[
L(NNθ, V[0,T], w[0,T], y[0,T])|Y0:T

]
by 1

q

∑q

j=1 L(NNθ, Vj
[0,T], wj

[0,T], y[0,T])

– Repeat the whole procedure for different sampled simulations of Y to get an approximation
of the outer expectation of the loss function

Department of Biosystems Science
and Engineering MCM23 18/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states

• We have developed a method which exploits the power of Machine Learning to tackle high
dimensional problems by extending the DeepCME

• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training
• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states
• We have developed a method which exploits the power of Machine Learning to tackle high

dimensional problems by extending the DeepCME

• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training
• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states
• We have developed a method which exploits the power of Machine Learning to tackle high

dimensional problems by extending the DeepCME
• The methods is versatile and does not need simulations for the prediction step

• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training
• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states
• We have developed a method which exploits the power of Machine Learning to tackle high

dimensional problems by extending the DeepCME
• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)

• The current DNN can only make predictions for observation process trajectories whose maximal
length cannot exceed the ones saw in the training

• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states
• We have developed a method which exploits the power of Machine Learning to tackle high

dimensional problems by extending the DeepCME
• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training

• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

Conclusion Remarks

• Stochastic Filtering is important to pave the way for real-time estimations of cellular states
• We have developed a method which exploits the power of Machine Learning to tackle high

dimensional problems by extending the DeepCME
• The methods is versatile and does not need simulations for the prediction step
• Implementation (in progress)
• The current DNN can only make predictions for observation process trajectories whose maximal

length cannot exceed the ones saw in the training
• Try to make predictions at intermediate times t ≤ T

Department of Biosystems Science
and Engineering MCM23 19/20

References

• Ankit Gupta, Christoph Schwab, and Mustafa Khammash. “DeepCME: A deep learning
framework for computing solution statistics of the chemical master equation”. In: PLoS
computational biology 17.12 (2021), e1009623

• Elena Sofia D’Ambrosio et al. “Filtered finite state projection method for the analysis and
estimation of stochastic biochemical reaction networks”. In: bioRxiv (2022)

• Zhou Fang, Ankit Gupta, and Mustafa Khammash. “A scalable approach for solving chemical
master equations based on modularization and filtering”. In: bioRxiv (2022), pp. 2022–10

• Zhou Fang, Ankit Gupta, and Mustafa Khammash. “Stochastic filtering for multiscale stochastic
reaction networks based on hybrid approximations”. In: Journal of Computational Physics 467
(2022), p. 111441

• Zhou Fang, Ankit Gupta, and Mustafa Khammash. “Stochastic filters based on hybrid
approximations of multiscale stochastic reaction networks”. In: 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE. 2020, pp. 4616–4621

Department of Biosystems Science
and Engineering MCM23 20/20

Thanks for the attention!
Elena Sofia D’Ambrosio
PhD Student
Control Theory And Systems Biology
Laboratory
elena.dambrosio@bsse.ethz.ch

ETH Zürich
Department of Biosystems Science and
Engineering
Mattenstrasse 26
4058 Basel, Switzerland
https://bsse.ethz.ch/

We acknowledge funding from the Swiss National Science Foundation under grant 182653.

mailto:elena.dambrosio@bsse.ethz.ch
https://bsse.ethz.ch/

