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Problem Setting

I Rare events are events that happen with very low probabilities but their occurrences
can lead to critical consequences.

I In the context of communication systems, a rare event can be the event that the
wireless system is in an outage and hence fail to operate properly.

I For sophisticated networks such as ultra-reliable 5G or 6G systems, one can
encounter the problem of estimating failure probabilities of the order of 10−9 (Ben
Rached et al. 2020).

Objective

Let X = (X1,X2, · · · ,XN)t a random vector composed of independent positive
components with joint PDF f (x) =

∏N
n=1 fXn (xn). Let Sn =

∑n
i=1 Xi and g : R+ → R a

given function. The aim is to develop a generic state-dependent Importance sampling
(IS) algorithm via a novel Stochastic Optimal Control (SOC) formulation to estimate
rare event problems that could be written in the following form

α = E [g (SN)] . (1)
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Applications

Right Tail: g(x) = 1(x≥γ), α = P(SN ≥ γ), where SN =
∑N

i=1 Xi

Example: Ruin probability of an insurance company. SN represents the total sum
of claims, and γ is the initial reserve (Asmussen and Glynn 2007).

Left Tail: g(x) = 1(x≤γ), α = P(SN ≤ γ),

Example: The outage probability (OP): probability that the signal-to-noise ratio
(SNR) at EGC and MRC diversity receivers falls below a given threshold γ.

I SNR = Es

N0

√
N1−p+q

(∑N
i=1 R

p
i

)q
, where N is the number of diversity branches,

Es

N0
is the SNR per symbol, Ri , i = 1, 2, ...,N, is the fading channel envelope,

(p, q) = (1, 2) for EGC or (p, q) = (2, 1) for MRC (Ben Rached et al. 2016).

I OP = P (SNR ≤ γth) = P
(∑N

i=1 Xi ≤ γ
)

, with Xi = R2
i and γ = γthN0/Es

(for MRC) or Xi = Ri and γ =
√
γthN0N/Es (for EGC), i = 1, 2, · · · ,N.
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Applications

CDF of the ratio of independent RVs:

I For SISO systems and in the presence of interferences and noise, the OP is
expressed as (Ben Rached et al. 2017)

Pout = P (SINR ≤ γ) = P

(
X0∑N

n=1 Xn + η
≤ γ

)
,

where X0 is the useful signal power, X1, · · · ,XN are the received powers of the N
interfering signals and η is the variance of the noise. We assume that X0, · · · ,XN

are independent.

I By conditioning on X1,X2, · · · ,XN and using the law of total expectation, we write

E

[
FX0

(
γ

(
N∑

n=1

Xn + η

))]
, (2)

where FX0(·) is the CDF of the RV X0.

I This corresponds to the form in (1) with g(x) = FX0(γ(x + η)).
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Inefficiency of naive Monte Carlo

I The naive MC estimator of our quantity of interest α = E [g(SN)] is given by:

α̂mc = 1
M

∑M
k=1 g(S

(k)
N ), where M is the number of simulation runs and

{S (k)
N }Mk=1 represent independent realizations of the RV SN .

I Statistical Error:

|α− α̂MC | ≈ C

√
var [g(SN)]

M
,

I Relative Error: (for g(x) = 1(x∈A))

εMC =
|α− α̂MC |

α
≈ C

√
α(1− α)√

Mα
≈ C√

Mα
.

I To ensure a relative error equal to TOL, M = C 2

TOL2α samples are required.

I When α is small (rare event probabilities), MC method is computationally
expensive → Use appropriate variance reduction techniques, such as IS.
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Importance sampling

Idea: Introduce a new probability measure f̃ (·), which reduces Var [g(SN)] but keeps
E [g(SN)] unchanged (Kroese et al. 2011).

α =

∫
RN

g(SN)f (x)dx

=

∫
RN

g(SN)
f (x)

f̃ (x)︸ ︷︷ ︸
g̃(x)

f̃ (x)dx

= Ef̃ [g̃ (X1, · · · ,XN)] ,

(3)

where Ef̃ [·] is the expectation under which the vector

(X1,X2, · · · ,XN)T has the PDF f̃ (·). The ratio f (x)
f̃ (x)

is called the likelihood ratio.
Figure 1: Importance Sampling.

I The IS estimator is α̂IS = 1
M

∑M
k=1 g̃

(
X

(k)
1 , · · · ,X (k)

N

)
, where

{[
X

(k)
1 , · · · ,X (k)

N

]T }M

k=1

represent independent realizations of [X1, · · · ,XN ]
T sampled according to f̃ (·).

I The aim is then to propose a sub-optimal change of measure that leads to a substantial
amount of variance reduction.
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Literature

I The literature is rich of variance reduction techniques dealing with the right-tail
(g(x) = 1(x≥a)) and the left-tail (g(x) = 1(x≤a)) problems.

I In particular, various state-independent IS techniques have been proposed (Rajhaa
and Juneja 2021, Juneja 2007, Murthy et al. 2015).

I State-independent change of measure for estimating certain rare events involving
sums of heavy-tailed RVs are not efficient (Bassamboo et al. 2007).

I Complex state-dependent IS have been proposed in the literature over the last few
years (Blanchet and Lam 2012, Blanchet and Li 2011, Blanchet Liu 2006, Dupuis
and Wang. 2004, Dupuis et al. 2007).

I By state-dependent IS, we mean that the IS parameter is dynamically chosen as a
function of the current step and current state of the dynamical system.

I In the i.i.d case and for distributions with finite MGFs, an approach has been
developed based on connecting IS with SOC (Dupuis and Wang 2004).
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SOC Formulation

I Embed the static problem with the evolution of a Markov chain with the
following dynamics: S0 = 0 and

Sn+1 = Sn + Xn+1, n = 0, 1, · · · ,N − 1 (4)

I Perform a change of measure such that, given Sn, Xn+1 is distributed
according to f̃Xn+1 (·;µn+1(Sn)), where µn+1 is a function of Sn.

I The new joint PDF can be written as

f̃ (x) =
N∏

n=1

f̃Xn (xn;µn (sn−1)) , (5)

where sn−1 =
∑n−1

i=1 xi .

Objective

Find the optimal controls µn : R+ → A ⊂ R, n = 1, 2, · · · ,N, that minimizes the
second moment of the IS estimator.
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SOC Formulation

I The cost function for µn+1, · · · , µN ∈ AN−n, n = 0, · · · ,N − 1, is

Cn,s(µn+1, · · · , µN) = Ef̃

[
(g (SN))2×

N∏
i=n+1

(
fXi (Xi )

f̃Xi (Xi ;µi (Si−1))

)2

| Sn = s

]
,

(6)
where A is the set of admissible Markov controls.

I Define also the value function as follows

u(n, s) = inf
µn+1,··· ,µN∈AN−n

Cn,s(µn+1, · · · , µN). (7)
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Dynamic Programming

Proposition (Ben Amar et al. 2023)

For all n ∈ {0, 1, · · · ,N − 1} and s ≥ 0, we have

u(n, s) = inf
µ∈A

Ef̃

( fXn+1 (Xn+1)

f̃Xn+1 (Xn+1;µ)

)2

u (n + 1,Sn+1) | Sn = s

 , (8)

and if the minimum is attained, we have

µn+1(s) = arg min
µ∈A

Ef̃

( fXn+1 (Xn+1)

f̃Xn+1 (Xn+1;µ)

)2

u (n + 1,Sn+1) | Sn = s

 , (9)

with u(N, x) = (g(x))2, Sn+1 = s + Xn+1 and Xn+1 is distributed according to
f̃Xn+1 (·;µ).
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Hazard Rate Twisting (HRT) family

I Originally developed in (Juneja and Shahabuddin 2002, Ben Rached et al. 2018).

I Define the hazard rate λXi (·) associated to the RV Xi as

λXi (x) =
fXi (x)

1− FXi (x)
, x > 0, (10)

where FXi (x) = P(Xi ≤ x) is the CDF of Xi , i = 1, · · · ,N.

I Define the hazard function as

ΛXi (x) = − log (1− FXi (x)) , x > 0. (11)

I From (10) and (11), the PDF of Xi can be expressed as

fXi (x) = λXi (x) exp (−ΛXi (x)) , x > 0. (12)

I The HRT change of measure is obtained by twisting the hazard rate of each
component Xi by a quantity µi ∈ A =]−∞, 1[

f̃Xi (x ;µi ) = (1− µi )λXi (x) exp (−(1− µi )ΛXi (x))

= (1− µi )fXi (x) exp (µiΛXi (x)) , x > 0.
(13)
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Numerical Algorithm

Aim: Compute u (n, sk) and µn for all n = 0, 1, · · · ,N − 1 and for all
sk , k = 0, 1, · · · ,K .

We truncate the space R+ and work in the interval [0, S ], where S is a large number in
R+. Let us consider a mesh in the one dimensional s-space: 0 = s0 < s1, · · · < sK = S .

1 For each sk in the mesh, we solve

u (N − 1, sk) = min
µ∈A

Ef̃

[(
fXN (XN)

f̃XN (XN ;µ)

)2

(g (sk + XN))2
]

= min
µ∈A

∫ +∞

0

(fXN (t))2

f̃XN (t;µ)
(g (sk + t))2 dt,

(14)

and

µN(sk) = arg min
µ∈A

∫ +∞

0

(fXN (t))2

f̃XN (t;µ)
(g (sk + t))2 dt. (15)
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Numerical Algorithm

2 Having obtained u (N − 1, sk) for all sk in the grid, the next step corresponds to

u (N − 2, sk) = min
µ∈A

∫ +∞

0

(
fXN−1(t)

)2
f̃XN−1 (t;µ)

u (N − 1, sk + t) dt. (16)

Interpolating u (N − 1, sk), k = 0, 1, · · · ,K , in the s-space is used. Also linear
extrapolation is used for s > S when needed.

3 Having u (n, sk) for all n ∈ {0, 1, · · · ,N − 1} and for all sk in the grid
k = 0, 1, 2, · · · ,K , the following step is to solve for µn, n = 1, 2, · · · ,N, by going
forward in time. Let S0 = 0 and sample from f̃X1 (·, µ1) to get S1. Note that µ1 has
been already computed in the resolution of the backward problem. Then compute
µ2 as

µ2 (s̃1) = arg min
µ∈A

∫ ∞
0

(fX2(t))2

f̃X2 (t;µ)
u (2, s̃1 + t) dt. (17)
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Numerical Algorithm

Having computed µ2, we simulate S2 as S2 = s̃1 + X2, with X2 sampled from f̃X2 (.;µ2) .
We keep repeating this procedure until we get µN and then we sample XN .

4 The forward problem is repeated M times. The proposed IS estimator is then given
as

α̂IS =
1

M

M∑
k=1

g
(
S
(k)
N

) N∏
i=1

fXi

(
X

(k)
i

)
f̃Xi

(
X

(k)
i , µi (S

(k)
i−1)

) . (18)
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Numerical Algorithm

Remark

In the case of smooth controls, the optimization problem (17) can be avoided by using
instead an interpolation between the controls, obtained in the backward step, on the grid
s1, · · · , sK .

Figure 2: Optimal control in the case of the left-tail i.i.d standard Log-normal RVs with
N = 4, K = 10, m = 0 dB, σ = 8.5 dB, and γth = −10 dB.
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Cost Analysis

I Denote our estimator by HRT-SOC and HRT to be the estimator without SOC,
i.e. the control is constant, independent of the state and time (Ben Rached et al.
2016).

I Let MHRT and MHRT-SOC be the number of required simulation runs to ensure a
relative error equal to TOL.

I The total costs have the following expressions

WHRT-SOC = N × K × Tb︸ ︷︷ ︸
Backward cost

+MHRT-SOC × Tf︸ ︷︷ ︸
Forward cost

, (19)

WHRT = MHRT × Tf︸ ︷︷ ︸
Forward cost

, (20)

where Tb is the time required in the backward algorithm to calculate a single
control and Tf the cost per sample in the forward step (it is approximately the
same for both approaches).
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Aggregate Method

Idea: divide the sum SN into B blocks and compute the controls for each block rather
than for each Xi , i = 1, · · · ,N
→ reduce the backward cost from N × K × Tb to B × K × Tb. We call this method
aggregate method.

I Choose B blocks, such that B ∈ {1, 2, · · · ,N} and consider the following dynamics

Snm+bm+1 = Snm +

nm+bm+1∑
i=nm+1

Xi , m = 0, 1, · · · ,B − 1, (21)

where nm =
∑m

j=1 bj , and bm, m = 1, 2, · · · ,B, are chosen such that

nB =
∑B

j=1 bj = N.

I The idea is to have the same control µm(Snm ) for each Xi from i = nm + 1 to
i = nm+1.

Remark

With this proposed approach, we decrease the cost of the backward step with the price
of increasing the variance.
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Numerical Results

OP in a Log-Normal environment without co-channel interference

Pout = P

(
N∑

n=1

Xi < γth

)
= E

[
g

(
N∑

n=1

Xi

)]
, (22)

where g(x) = 1(x<γth).

Comparison with the HRT (Ben Rached et al. 2016) and to the exponential twisting
estimator (Asmussen et al. 2016).

OP in the presence of co-channel interference in a Log-Normal environment for SISO
systems

Pout = P (SINR < γth) = P

(
X0∑N

n=1 Xn + η
≤ γth

)
= E

[
g

(
N∑

n=1

Xi

)]
, (23)

where g(x) = FX0(γth(x + η)).

Comparison with the estimator based on a covariance matrix scaling (CS) technique (Ben
Rached et al .2017) the exponentially tilted (ET) estimator (Botev and L’Ecuyer 2017).
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Numerical Results

1 We fix N = 10 and TOL = 0.05 and we vary the threshold γth
(range of OP: [2× 10−12, 6× 10−6]).

Figure 3: Number of required simulation runs for 5% relative error. For the aggregate
method, we choose a constant parameter b, i.e. bm = 2 for all m = 1, · · · ,B with
B = N

2
.

I The HRT-SOC approach requires the smallest number of simulation runs.

I The number of simulations is reduced by about 41775 times for a small threshold
(4 dB) which corresponds to an OP value of 2× 10−12.
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Numerical Results

Figure 4: CPU time required for 5% relative error. For the aggregate method, we choose
a constant parameter b, i.e. bm = 2 for all m = 1, · · · ,B with B = N

2
.

I As the event becomes rarer, the time gap between the proposed approach and other
IS techniques increases significantly.

I The efficiency of the aggregate method in terms of time reduction exceeds the loss
in terms of variance.

I The HRT-SOC-AG reduces the CPU time by about 1.7 times compared to the
HRT-SOC approach for γth ≥ 5 dB.
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Numerical Results

2 We fix γth = 10 and TOL = 0.05 and we vary N. For HRT-SOC-AG, bm = 2,

m = 1, · · · , N
2

for N even, and bm = 2,m = 1, · · · , N−3
2
, b N−1

2
= 3 for N odd.

(range of OP: [2.5× 10−12, 6× 10−5]).

(a) Number of required simulation
runs.

(b) CPU time required.

I For N = 13, HRT-SOC requires 7455 times less simulation runs than the HRT
technique to meet the same accuracy requirement.
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Numerical Results

Remarks

I For small γ and large N, constant block b is less efficient in terms of CPU time
than the HRT-SOC approach.

I In these cases, it is more efficient to reduce the variance rather than to reduce the
cost of the backward step.

I bm, m = 1, · · · ,B should be adaptively chosen to give better results

min
b,M,K

B × K × Tb + M × Tf ,

subject to C 2 Var [THRT-SOC-AG(b,K)]

Mα2
≤ TOL2.

I An optimal choice of bm in the case of a very rare event is bm = 1, m = 1, · · · ,B
with B = N.

I When the event becomes less rare, an optimal choice of B is to take a single block;
i.e. b1 = N. By doing this, the HRT-SOC-AG technique reduces to the HRT
technique since in this case the controls are state-independent.
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Numerical Results

OP in a Log-Normal environment without co-channel interference

Pout = P

(
N∑

n=1

Xi < γth

)
= E

[
g

(
N∑

n=1

Xi

)]
, (24)

where g(x) = 1(x<γth).

Comparison with the HRT (Ben Rached et al. 2016) and to the exponential twisting
estimator (Asmussen et al. 2016).

OP in the presence of co-channel interference in a Log-Normal environment for
SISO systems

Pout = P (SINR < γth) = P

(
X0∑N

n=1 Xn + η
≤ γth

)
= E

[
g

(
N∑

n=1

Xi

)]
, (25)

where g(x) = FX0(γth(x + η)).

Comparison with the estimator based on a covariance matrix scaling (CS) technique (Ben
Rached et al .2017) the exponentially tilted (ET) estimator (Botev and L’Ecuyer 2017).
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Numerical Results

1 We fix N = 10 and TOL = 0.05 and we vary γ
(range of OP: [2× 10−10, 5× 10−7]).

(a) Number of required simulation
runs.

(b) CPU time required.

I The CS technique requires approximately 2000 times as many simulations as needed
by the HRT-SOC scheme.

I When γth = −30 dB, HRT-SOC is 13 times more efficient than the ET scheme.

I The HRT-SOC-AG technique requires less time than the HRT-SOC technique.
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Numerical Results

2 We fix γth = −24 dB and N = 10 (α = 10−7) and we vary TOL.

(a) Number of required simulation runs. (b) CPU time required.

I Our approaches are 2000 times (respectively 65 times) more efficient than the CS
(respectively the ET) approaches for all values of TOL.

I The required time for the proposed methods compared to the other algorithms
remains unchanged for the considered range of TOL.
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Summary

I We developed a generic state dependent IS algorithm in order to efficiently
estimate rare events quantities that could be written in a form of an
expectation of some functional of sums of independent RVs.

I Within a pre-selected class of change of measures, the optimal IS parameters
are determined via a connection to a SOC formulation.

I Showed a substantial amount of variance reduction compared to other
well-known estimators.

I Proposed an aggregate method to further improve the efficiency in terms of
computational time.

Future directions: further optimize the aggregate method, and extend the
approach to the multivariate case.

Further details in : Ben Amar, E., Ben Rached, N., Haji-Ali, A. L., Tempone, R.
(2023). State-dependent importance sampling for estimating expectations of
functionals of sums of independent random variables. Statistics and Computing,
33(2), 40.
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