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The problem

Consider sequence space embeddings:

`mp ↪→ `mq , 1 ≤ p, q ≤ ∞

Approximate x ∈ Rm = `mp using information

N : Rm → Rn, m� n (at least m ≥ 2n)

via deterministic algorithms An = φ ◦ N
; minimal worst-case error

edet(n, `mp ↪→ `mq ) := inf
An

sup
‖x‖p≤1

‖An(x)− x‖q

via randomized algorithms An = (φω ◦ Nω)ω∈Ω

eran(n, `mp ↪→ `mq ) := inf
An

sup
‖x‖p≤1

E ‖An(x)− x‖q
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Information maps and adaption

N : `mp → Rn

non-adaptive information, representable as matrix N ∈ Rn×m,

y = Nx = (L1(x), . . . , Ln(x)), L1, . . . , Ln ∈ `′p
adaptive information y = N(x) where

yi := Li(f ; y1, . . . , yi−1), Li( · ; y1, . . . , yi−1) ∈ `′p

iid information = special non-adaptive randomized information,
most prominently Gaussian information with

Li(x) :=
m∑

j=1
gijxj , gij

iid∼ N (0, 1)
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`2-approximation of summable sequences

`m1 ↪→ `m2

deterministic rate [Kashin 1977, Garnaev & Gluskin 1984],

edet (n, `m1 ↪→ `m2 ) �

√
log m

n
n , m ≥ 2n

non-linear reconstruction based on iid info y = Nx (Gaussian)
An(x) = argmin

z : Nz=y
‖z‖1

(achieves desired worst-case error rate with high probability)
improvements in randomized setting?

1√
n

[Heinrich 1992]
� eran (n, `m1 ↪→ `m2 ) , m ≥ 2n

R.J. Kunsch, E. Novak, M. Wnuk Randomized Approximation 3/11



Setting Known results New results

`2-approximation of summable sequences

`m1 ↪→ `m2

deterministic rate [Kashin 1977, Garnaev & Gluskin 1984],

edet (n, `m1 ↪→ `m2 ) �

√
log m

n
n , m ≥ 2n

non-linear reconstruction based on iid info y = Nx (Gaussian)
An(x) = argmin

z : Nz=y
‖z‖1

(achieves desired worst-case error rate with high probability)
improvements in randomized setting?

1√
n

[Heinrich 1992]
� eran (n, `m1 ↪→ `m2 ) , m ≥ 2n

R.J. Kunsch, E. Novak, M. Wnuk Randomized Approximation 3/11



Setting Known results New results

Uniform approximation of square-summable sequences

`m2 ↪→ `m∞

deterministic approximation hard:

edet (n, `m2 ↪→ `m∞)
[Smolyak 1965]

� 1 , m ≥ 2n

randomized for m ≥ 2n:√
log n
n

[Heinrich 1992]
� eran (n, `m2 ↪→ `m∞)

[Mathé 1991]
�

√
logm
n

linear reconstruction based on iid info y = Nx (Gaussian)

An(x) = 1
nN
>y
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Setting Known results New results

Uniform approximation of summable sequences

`m1 ↪→ `m∞

optimal deterministic rate achieved with linear algorithms,

edet (n, `m1 ↪→ `m∞) �

√
log m

n
n , m ≥ 2n

combining non-linear reconstruction for `m1 ↪→ `m2
with randomized linear method for `m2 ↪→ `m∞ [Heinrich 1992]
√
log n
n � eran (n, `m1 ↪→ `m2 ) �

√
(log m

n )(logm)
n , m ≥ 2n

Gaussian iid info feeds both stages, hence, the whole method
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Summary of known results

Known results:
best known rates achieved with iid info (i.e. non-adaptive)
lower bounds [Heinrich 1992] without m-dependence

New results:
new lower bounds reflecting dependence on m
(for non-adaptive setting, including iid info)
reduced m-dependence via adaptive info (not iid!)
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A new lower bound

Theorem (K, Novak, Wnuk 2023*)
For sufficiently large m ∈ N there exist constants c0, ε0 > 0 such
that for

n ≤ c0
√
logm

we have the non-adaptive Monte Carlo lower bound

eran,nonada(n, `m1 ↪→ `m∞) ≥ ε0 .

Proof idea: Switch to average case setting, i.e. random input:

X = 2
3eI + 1

12nPZ ,

with random index I ∼ U{1, . . . ,m}, Gaussian Z ∼ N (0, Im),
and projection P onto 2n randomly picked coordinates.
Then, with high probability, ‖X − 2

3eI‖1 ≤ 1
3 , especially ‖X‖1 ≤ 1.
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Approximability of operators

With m→∞, we conclude non-approximability of ∞-dim.
sequence space embeddings and non-compact operators in general:

Corollary (K, Novak, Wnuk 2023*)
There exists ε0 > 0 such that for all n ∈ N we have
the non-adaptive Monte Carlo lower bound

eran,nonada(n, `1 ↪→ `∞) ≥ ε0 .

Theorem (K, Novak, Wnuk 2023*)
Let S : F → G be a non-compact linear operator between Banach
spaces F ,G. Then there exists εS > 0 such that for all n ∈ N we
have the non-adaptive Monte Carlo lower bound

eran,nonada(n,S) ≥ εS .
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Adaptive Monte Carlo methods

Theorem (K, Novak, Wnuk 2023*)
For large m ∈ N, adaptive Monte Carlo methods yield the upper
bound

eran,ada(n, `m1 ↪→ `m2 ) �

√
log log m

n
n .

Idea: For an error smaller than ε/2 > 0, it suffices to identify the
k = d16ε−2e largest entries of x (heavy hitters).
Woodruff et al. (2011, 2019) adaptively identify the heavy hitters
with high probability using n � k log log m

k samples by sequentially
narrowing down the potential locations of the heavy hitters.

This upper bound also applies for `m1 ↪→ `m∞.
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Gap between non-adaptive and adaptive Monte Carlo

Non-adaptive randomization (including methods with iid info)
can be worse than adaptive randomization for large problems:

Theorem (K, Novak, Wnuk 2023*)
For m =

⌈
C exp(an2)

⌉
with suitable C , a > 0, we obtain the gap

eran,ada(n, `m1 ↪→ `m2 )
eran,nonada(n, `m1 ↪→ `m2 ) �

√
log n
n .

Heinrich (2022/23) showed a similar gap of order log n√
n

for parametric integration and standard info (function evaluation).

Here: Larger gap but for general info (linear functionals)
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Merci pour votre attention.

Des questions?
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