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Part I: Quasi-Monte Carlo

cubature



Lattice rules

Rank-1 lattice rules

Qs,n(f ) =
1

n

n∑
i=1

f (t i ) ≈
∫
[0,1]s

f (y) dy = Is(f )

have the points

t i = mod

(
iz
n
, 1

)
, i ∈ {1, . . . , n},

where the entire point set is determined by

the generating vector z ∈ Ns , with all

components coprime to n.
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Lattice rule with z = (1, 55) and n = 89

nodes in [0, 1]2

Lattice rules and periodic functions are a match made in heaven!

Periodic means

f (y1, y2, . . . , ys) = f (y1 + 1, y2, . . . , ys) = f (y1, y2 + 1, . . . , ys) = · · ·
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Dimension s = 1: the only lattice is the left-Riemann rule

For z ∈ {1, . . . , n − 1}, gcd(z , n) = 1, it holds that

Q1,n(f ) =
1

n

n∑
k=1

f

(
mod

(
kz

n
, 1

))
=

1

n

n∑
k=1

f

(
k

n

)
.

Suppose f : [0, 1) → R is p times continuously differentiable and periodic.

Let h = 1
n . Then the Euler–Maclaurin summation formula gives

n−1∑
k=0

hf (kh) =

∫ 1

0

f (x)dx +

⌊p/2⌋∑
k=1

B2k

(2k)!
(f (2k−1)(1)− f (2k−1)(0))

− (−1)php
∫ 1

0

B̃p(x)f
(p)(x)dx

∴

∣∣∣∣ ∫ 1

0

f (x)dx − 1

n

n−1∑
k=0

f

(
k

n

)∣∣∣∣ = O(n−p).
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Exponential convergence for analytic, periodic functions

∫ 1

0

exp(− sin(2πx))dx
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Can we observe exponential convergence with lattice rules for

analytic, periodic functions when dimension s = 2?

∫ 1

0

∫ 1

0

exp(− sin(2πx) cos(2πy)2)dx dy
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A suitable generating vector for an integrand satisfying certain smoothness properties

can be found using a component-by-component (CBC) algorithm (Nuyens and Cools

2006; Kuo, Nuyens, and Cools 2006).

• For integrands belonging to certain weighted Sobolev spaces of smooth

functions, the CBC algorithm can be used to produce a generating vector

satisfying a rigorous error bound. As input, the CBC algorithm takes the weights

and smoothness parameter of the Sobolev space (and number of QMC nodes n).

• Fast CBC: FFT can be used to reduce the computational complexity of the CBC

algorithm.
6



Part II: The periodic model of

uncertainty quantification for

PDEs



Let (Ω,F ,P) be a probability space and D ⊂ Rd , d ∈ {1, 2, 3}, a
bounded physical domain with Lipschitz boundary.

Elliptic PDE with uncertain/random coefficient

Find u : D × Ω → R that satisfies

−∇ · (a(x ,ω)∇u(x ,ω)) = f (x) for x ∈ D,

+boundary conditions on ∂D

for almost all events ω ∈ Ω. Here, the diffusion coefficient

a(·,ω) ∈ L∞+ (D) is uncertain.

In forward uncertainty quantification, one is interested in computing

certain response statistics of the solution, usually E[u] or E[G (u)] and

Var[u] or Var[G (u)], where G is a (linear) functional representing some

quantity of interest derived from the solution.

Depending on the application, two common models for the random field

A that appear in the literature are

• uniform and affine;

• lognormal.
7



Background

A popular model in the literature: the uniform and affine model

For x ∈ D and ω ∈ Ω,

a(x ,ω) = a(x) +
∑
j≥1

Yj(ω)ψj(x), Yj i.i.d. uniform on [− 1
2 ,

1
2 ].

Computing E[u(x , ·)] (or some quantity of interest E[G (u)]) using

• Rank-1 lattice cubature rules with random shifts

⇒ cubature error O(n−1+ε) at best. (Kuo, Schwab, Sloan 2012)

• Interlaced polynomial lattice rules

⇒ higher order convergence O(n−1/p) for some 0 < p < 1 (p is a

summability exponent s.t. (∥ψj∥L∞)j≥1 ∈ ℓp). (Dick, Kuo, Le Gia,

Nuyens, Schwab 2014)

8



Periodic model of UQ

In this talk, we instead model the uncertainty in the diffusion coefficient

as follows.

For x ∈ D and ω ∈ Ω,

a(x ,ω) = a(x) +
∑
j≥1

Θ(Yj(ω))ψj(x), Yj i.i.d. uniform on [− 1
2 ,

1
2 ]

with the special choice Θ(y) = sin(2πy).

• Note that Z (ω) := sin(2πY (ω)) has the probability density
1
π

1√
1−z2

on [−1, 1], i.e, Z ∼ Arcsine(−1, 1).

• We can match the mean and covariance of a with the “uniform

model” by choosing Θ(y) = 1√
6
sin(2πy).

• Note that the periodicity is only assumed for the random/uncertain

variable!

9



Affine vs. periodic

Affine

a(x , y) = a(x) +
100∑
j=1

yjψj(x)

Periodic

a(x , y) = a(x)+
1√
6

100∑
j=1

sin(2πyj)ψj(x)

a(x) = 2, ψj(x) = j−3/2 sin((j − 1
2 )πx), x ∈ [0, 1]

10



Let U := [−1/2, 1/2]N and D ⊂ Rd , d ∈ {1, 2, 3}, a nonempty bounded

Lipschitz domain. For the parametric PDE{
−∇ · (a(x , y)∇u(x , y)) = f (x) for x ∈ D, y ∈ U

u(x , y) = 0 for x ∈ ∂D, y ∈ U,

with u(·, y) ∈ H1
0 (D), f ∈ H−1(D), and

a(x , y) = a(x) +
s∑

j=1

sin(2πyj)ψj(x),

with assumptions

• 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D, y ∈ U

•
∑∞

j=1 ∥ψj∥pL∞ <∞ for some p ∈ (0, 1)

• ∥ψ1∥L∞ ≥ ∥ψ2∥L∞ ≥ · · ·

[K–Kuo–Sloan 2020] showed that there exists a constructible lattice rule

satisfying the QMC cubature error

|Is(G (u))−Qn,s(G (u))| ≤ Cn−1/p with constant C > 0 independent of s,

for any linear quantity of interest G : H1
0 (D) → R.

11



Numerical example: QMC for PDE [K–Kuo–Sloan (2020)]

Let us consider the PDE problem

−∇ · (aper(x , y)∇u(x , y)) = x2, u(·, y)|∂D = 0,

in the physical domain D = (0, 1)2 with the diffusion coefficient

aper(x , y) = 2 +
100∑
j=1

sin(2πyj)ψj(x), yj ∈ [− 1
2 ,

1
2 ],

where ψj(x) = c√
6
j−θ sin(jπx1) sin(jπx2). Note that ∥ψj∥L∞ ∝ j−θ.

Figure 7: Left: θ = 2. Right: θ = 4.
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Part III: Kernel interpolation

over lattice point sets



Let us continue the study of our elliptic model PDE problem.

In [K–Kazashi–Kuo–Nobile–Sloan (2022)], we studied kernel interpolation

of smooth, periodic functions based on lattice point sets. We considered

the following setting:

• Let α ≥ 1 be an integer and let H := Hs,α,γ be the Hilbert space

containing absolutely continuous, somewhat smooth periodic

functions f : [0, 1)s → R endowed with the norm

∥f ∥2H :=
∑

u⊆{1:s}

1

(2π)2α|u|γu

∫
[0,1]|u|

∣∣∣∣ ∫
[0,1]s−|u|

(∏
j∈u

∂α

∂yα
j

)
f (y)dy−u

∣∣∣∣2 dyu,

provided that f has mixed partial derivatives of order α.

13



The space H is actually a reproducing kernel Hilbert space (RKHS), with

an explicitly known and analytically simple reproducing kernel:

K (y , y ′) :=
∑

u⊆{1:s}

γu
∏
j∈u

ηα(yj , y
′
j ),

where

ηα(y , y
′) =

(2π)2α

(−1)α+1(2α)!
B2α(frac(y − y ′)), y , y ′ ∈ [0, 1],

where B2(y) = y2 − y + 1
6 , B4(y) = y4 − 2y3 + y2 − 1

30 , and so on, are

the Bernoulli polynomials. In particular,

⟨f ,K (·, y)⟩H = f (y) for all f ∈ H and y ∈ [0, 1]s .

Example: If (γu)u⊆{1,...,s} are product weights, i.e.,

γu :=
∏
j∈u

γj , u ⊆ {1, . . . , s},

then

K (y , y ′) =
s∏

j=1

(1 + γjηα(yj , y
′
j )).

14



Suppose that one is interested in finding an approximation for the

function f ∈ H based on the point evaluations f (t1), . . . , f (tn),
t j ∈ [0, 1]s . We introduce the kernel interpolant

fn(y) :=
n∑

k=1

ckK (tk , y), tk := mod

(
kz
n
, 1

)
, (1)

and require the interpolation property fn(tk) = f (tk) for hold for all

k = 1, . . . , n. Then the coefficients can be solved from the linear system

Kc = f ,

where c := [c1, . . . , cn]
T are the coefficients in (1) and

Kk,ℓ = K (tk , tℓ) and f := [f (t1), . . . , f (tn)]T.

Note that Kk,ℓ = K ( (k−ℓ)z
n , 0), i.e., K is a circulant matrix ⇒

c = ifft
(
fft(f )./fft(K :,1)

)
This can be computed in O(n log n) time!

The kernel interpolant is cheap to construct!

15



In analogy to the cubature setting, the PDE problem{
−∇ · (a(x , y)∇u(x , y)) = f (x) for x ∈ D, y ∈ U,

u(x , y) = 0 for x ∈ ∂D, y ∈ U,

with u(·, y) ∈ H1
0 (D), f ∈ H−1(D), and

a(x , y) = a(x) +
s∑

j=1

sin(2πyj)ψj(x)

and assumptions

• 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D, y ∈ U

•
∑∞

j=1 ∥ψj∥pL∞ <∞ for some p ∈ (0, 1)

• ∥ψ1∥L∞ ≥ ∥ψ2∥L∞ ≥ · · ·

[K–Kazashi–Kuo–Nobile–Sloan 2022] showed that there exists a sequence

of SPOD weights (entering both the expression of the kernel K in the

interpolant and as inputs to a CBC algorithm) and a constructible lattice

rule satisfying the kernel approximation error

∥u − un∥L2(U×D) = O(n−
1
2p+

1
4 ) with constant C > 0 independent of s.
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Kernel approximation for PDE: L2 error

Let us consider the PDE problem

−∇ · (aper(x , y)∇u(x , y)) = x2, u(·, y)|∂D = 0,

in the physical domain D = (0, 1)2 with the diffusion coefficient

aper(x , y) = 1 +
100∑
j=1

sin(2πyj)ψj(x), yj ∈ [0, 1],

where ψj(x) = cj−θ sin(jπx1) sin(jπx2). Note that ∥ψj∥L∞ ∝ j−θ.

17



Reducing the computational complexity

.The SPOD weights used in the construction of the kernel interpolant were

γu :=
∑

mu∈{1:α}|u|

(|mu|!)
2

1+λ

∏
j∈u

(
b
mj

j S(α,mj)√
2e1/eζ(2αλ)

) 2
1+λ

. (2)

• the cost to obtain the generating vector z is O(s n log n + s3 α2 n);

• the cost of evaluating the kernel interpolant is O(s2 α2 n).

New idea (see Ian’s talk on Friday): leave out the order-dependent

part (|mu|!)
2

1+λ in (2), get

γ̃u :=
∑

mu∈{1:α}|u|

∏
j∈u

(
b
mj

j S(α,mj)√
2e1/eζ(2αλ)

) 2
1+λ

=
∏
j∈u

( α∑
m=1

(
bmj S(α,m)√
2e1/eζ(2αλ)

) 2
1+λ

)
.

These are product weights (“serendipitous weights”), where

• the cost to obtain the generating vector z is O(s n log n);

• the cost of evaluating the kernel interpolant is O(s n).

18



Kernel approximation for PDE: L2 error (redux)

Let us consider the PDE problem

−∇ · (aper(x , y)∇u(x , y)) = x2, u(·, y)|∂D = 0,

in the physical domain D = (0, 1)2 with the diffusion coefficient

aper(x , y) = 1 +
100∑
j=1

sin(2πyj)ψj(x), yj ∈ [0, 1],

where ψj(x) = cj−θ sin(jπx1) sin(jπx2). Note that ∥ψj∥L∞ ∝ j−θ.

19



In certain situations, the product weights can outperform SPOD weights.

20



The product weights can be used to perform computations for higher

dimensional problems (here, s = 1000).

21



Part IV: Application to an

inverse problem



The complete electrode model

Let D := {x ∈ R2 : ∥x∥ ≤ 1}. Let {Ek}Lk=1 ⊆ ∂D be an array of L := 16

equidistantly spaced non-overlapping electrodes of width 0.2 on the

boundary ∂D. Fix the current feed I ∈ RL
⋄ and let σ ∈ L∞+ (D). The

forward problem is to find the electromagnetic potential u ∈ H1(D) as

well as U ∈ RL, the potentials on the electrodes, which satisfy


∇ · (σ∇u) = 0 in D,

σ ∂u
∂n = 0 on ∂D \

⋃L
k=1 Ek ,

u + zkσ
∂u
∂n = Uk on Ek , k ∈ {1, . . . , L},∫

Ek
σ ∂u

∂n dS = Ik , k ∈ {1, . . . , L},

with n denoting the outer normal.

Moreover, we take zk = 1 ∀k .

The forward problem is solved numerically using EIDORS software

(FEM). 22



Fix the current pattern I k := e1 − ek+1 ∈ RL
⋄, k ∈ {1, . . . , L− 1}.

Kernel-based surrogate for the forward problem: Let us parameterize

the conductivity as

σ(x , y) := 1 +
1√
6

s∑
k=1

sin(2πyk)ψk(x), x ∈ D, y ∈ [0, 1]s ,

where ψk(x) := 1
(i2k+j2k )

ϑ sin(πik
x1+1
2 ) sin(πjk

x2+1
2 ), ϑ = 1.2, the sequence

(ik , jk)k≥1 is an ordering of the elements of N×N s.t. ∥ψk∥L∞ = O(k−ϑ)

by Weyl’s asymptotics. We set s = 30.

Denote by U(y) := vec([U1, . . . ,UL−1]) ∈ RL(L−1) the (flattened)

voltage matrix, comprised of the electrode potential measurements

corresponding to the current pattern I 1, . . . , I L−1 and y ∈ [0, 1]s .

We construct the (vector-valued) QMC–kernel interpolant

Un(y) :=
∑n

k=1 ckK (tk , y) ∈ RL(L−1) (using serendipitous weights) for

the mapping G : y 7→ U(y) based on n = 1024 207 QMC nodes satisfying

G (tk) = Un(tk) ∀k .

23



Experiment setup

We have constructed the QMC–kernel interpolant Un(y) offline based on

the periodically parameterized model for σ(x , y). For the numerical

experiments, we

• fix some target conductivity σtarget and numerically compute the

“exact” electrode potential measurements

Uexact := vec([U1
exact, . . . ,U

L−1
exact]) ∈ RL(L−1). To avoid the inverse

crime, we do not use the same FE mesh that was used to build the

surrogate; instead we use a finer FE mesh.

• we contaminate the electrode potential measurements with noise

Unoisy = Uexact + η, η ∼ N (0, τ 2I ),

where τ := 10−3 maxj,k=1,...,L(L−1) |(Uexact)j − (Uexact)k |.

Our reconstruction is σ(x , y∗), where

y∗ := argmin
y∈[0,1]s

{∥Unoisy − Un(y)∥2}.

The minimization is carried out using lsqnonlin in MATLAB with the

levenberg-marquardt algorithm.
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Figure 10: Left: target conductivity. Right: reconstructed conductivity.
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Figure 11: Left: target conductivity. Right: reconstructed conductivity.
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Conclusions

• Kernel interpolation method that can be used to approximate the output

high-dimensional parametric PDEs. Kernel interpolant can be constructed

efficiently at cost O(n log n). No multi-index sets! (Compare with sparse grids

or trigonometric approximation.)

• Using product weights, practical for challenging high-dimensional problems (e.g.,

as surrogates for Bayesian inversion).

• For EIT, the kernel interpolation scheme could be useful for efficient recovery of

other uncertainties (domain shape, electrode positions, contact resistances, etc.).
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