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Setting
0

The problem

Consider sequence space embeddings:

0y =4y, 1<p,g<

Approximate x € R™ = {77 using information
N:R"™ — R", m > n (at least m > 2n)

@ via deterministic algorithms A, = ¢po N
~» minimal worst-case error

et (n, 07 — (') := mf sup [|An(x) — x||q
An ||xp<1

e via randomized algorithms A, = (¢* o N¥),cq

era“(n,ﬁgf—)ﬂg’)' |nf sup E|[|An(x) — x]||q

" fIxllp<t
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Setting
oe

Information maps and adaption

N: (5 R”

non-adaptive information, representable as matrix N € R"*™,
y = Nx = (Li(x), ..., Ln(x)), Ly,...,Lh, ¥,
adaptive information y = N(x) where

yi = Li(fiy1,...,yi-1), Li(-iy1,-- -5 yim1) €4,
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Setting
oe

Information maps and adaption

N: (5 R”

non-adaptive information, representable as matrix N € R"*™,
y = Nx = (Li(x), ..., Ln(x)), Ly,...,Lh, ¥,
adaptive information y = N(x) where
yi = Li(fiy1,...,yi-1), Li(-iy1- .- yim1) €4,

ild information = special non-adaptive randomized information,
most prominently Gaussian information with

“ iid
Jj=1
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Known results
©000

{»-approximation of summable sequences

m m
0 — 43
@ deterministic rate [Kashin 1977, Garnaev & Gluskin 1984],

edet (n, ¢ — 1) < ., m>2n

non-linear reconstruction based on iid info y = Nx (Gaussian)

An(x) = argmin || z||1
z: Nz=y

(achieves desired worst-case error rate with high probability)

R.J. Kunsch, E. Novak, M. Wnuk Randomized Approximation



Known results
©000

{»-approximation of summable sequences

m m
0 — 43
@ deterministic rate [Kashin 1977, Garnaev & Gluskin 1984],

edet (n, ¢ — 1) < ., m>2n

non-linear reconstruction based on iid info y = Nx (Gaussian)
An(x) = argmin || z||1
z: Nz=y
(achieves desired worst-case error rate with high probability)
@ improvements in randomized setting?
1 [Heinrich 1992]

7 =

e (n, 07 — (7)), m > 2n
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Known results
000

Uniform approximation of square-summable sequences

0 =07

@ deterministic approximation hard:

[Smolyak 1965]
et (n, 05" — ™) = 1
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Known results
000

Uniform approximation of square-summable sequences

0 =07

@ deterministic approximation hard:
[Smolyak 1965]

et (n, 05" — ™) 1, m > 2n
@ randomized for m > 2n:
log n [Heinrich 1992] [Mathé 1991] log m
& = e (n 7)< g
n n

linear reconstruction based on iid info y = Nx (Gaussian)

1
An(x) = ;NTy
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Known results
[eYe] Yo

Uniform approximation of summable sequences

m m
0=
@ optimal deterministic rate achieved with linear algorithms,

= , m>2n
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Known results
[eYe] Yo

Uniform approximation of summable sequences

=107

@ optimal deterministic rate achieved with linear algorithms,

et (n, 4 — (™) < , m>2n

@ combining non-linear reconstruction for ({7 — (%
with randomized linear method for ¢5' < ¢7 [Heinrich 1992]

Vlog n (log 7)(log m)
OB L o (g s gy < Vo ,

n n

m>2n

Gaussian iid info feeds both stages, hence, the whole method
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Known results
oooe

Summary of known results

Known results:
@ best known rates achieved with iid info (i.e. non-adaptive)

@ lower bounds [Heinrich 1992] without m-dependence
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Known results
oooe

Summary of known results

Known results:
@ best known rates achieved with iid info (i.e. non-adaptive)

@ lower bounds [Heinrich 1992] without m-dependence

New results:

@ new lower bounds reflecting dependence on m
(for non-adaptive setting, including iid info)

e reduced m-dependence via adaptive info (not iid!)
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New results
©000

A new lower bound

Theorem (K, Novak, Wnuk 2023%*)

For sufficiently large m € N there exist constants cg,eq9 > 0 such

that for
n < cgy/logm

we have the non-adaptive Monte Carlo lower bound

eran,nonada(n,erln N Erono) > ep.
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New results
©000

A new lower bound

Theorem (K, Novak, Wnuk 2023%*)

For sufficiently large m € N there exist constants ¢y, g9 > 0 such

that for
n < coy/logm

we have the non-adaptive Monte Carlo lower bound

eran,nonada(mgr: N g;n) > eg.-
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New results
©000

A new lower bound

Theorem (K, Novak, Wnuk 2023%*)

For sufficiently large m € N there exist constants cg,eq9 > 0 such

that for

n < ¢/ logm

we have the non-adaptive Monte Carlo lower bound

eran,nonada(n,erln N Erono) > ep.

Proof idea: Switch to average case setting, i.e. random input:

2 1
X=Ze+5-PZ,

with random index | ~ U{1,..., m}, Gaussian Z ~ N(0, I,,,),
and projection P onto 2n randomly picked coordinates.

R.J. Kunsch, E. Novak, M. Wnuk Randomized Approximation



New results
©000

A new lower bound

Theorem (K, Novak, Wnuk 2023%*)

For sufficiently large m € N there exist constants cg,eq9 > 0 such

that for

n < ¢/ logm

we have the non-adaptive Monte Carlo lower bound

eran,nonada(n,erln N Erono) > ep.

Proof idea: Switch to average case setting, i.e. random input:

2 1

X== —PZ
T

with random index | ~ U{1,..., m}, Gaussian Z ~ N(0, I,,,),

and projection P onto 2n randomly picked coordinates.

Then, with high probability, || X — %e/||1 < % especially || X1 < 1.
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New results

[e] le]e]

Approximability of operators

With m — oo, we conclude non-approximability of co-dim.
sequence space embeddings and non-compact operators in general:

Corollary (K, Novak, Wnuk 2023*)

There exists eg > 0 such that for all n € N we have
the non-adaptive Monte Carlo lower bound

eran,nonada(n7€1 s Eoo) > eg.-

Theorem (K, Novak, Wnuk 2023%*)

Let S: F — G be a non-compact linear operator between Banach
spaces F, G. Then there exists €5 > 0 such that for all n € N we
have the non-adaptive Monte Carlo lower bound

eran,nonada(n 5) > £
5 = .

R.J. Kunsch, E. Novak, M. Wnuk Randomized Approximation



New results
[eYe] Yol

Adaptive Monte Carlo methods

Theorem (K, Novak, Wnuk 2023%*)
For large m € N, adaptive Monte Carlo methods yield the upper

bound
d log log =
MA@ (n " = ) 2| ——T.
n
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New results
[eYe] Yol

Adaptive Monte Carlo methods

Theorem (K, Novak, Wnuk 2023%*)
For large m € N, adaptive Monte Carlo methods yield the upper

bound
d log log =
MA@ (n " = ) 2| ——T.
n

Idea: For an error smaller than £/2 > 0, it suffices to identify the
k = [16c72] largest entries of x (heavy hitters).

Woodruff et al. (2011, 2019) adaptively identify the heavy hitters
with high probability using n < kloglog 7% samples by sequentially
narrowing down the potential locations of the heavy hitters. O
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New results
[eYe] Yol

Adaptive Monte Carlo methods

Theorem (K, Novak, Wnuk 2023%*)
For large m € N, adaptive Monte Carlo methods yield the upper

bound
d log log =
MA@ (n " = ) 2| ——T.
n

Idea: For an error smaller than £/2 > 0, it suffices to identify the
k = [16c72] largest entries of x (heavy hitters).

Woodruff et al. (2011, 2019) adaptively identify the heavy hitters
with high probability using n < kloglog 7% samples by sequentially
narrowing down the potential locations of the heavy hitters. O

This upper bound also applies for /{7 — (7.
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New results

[e]ele] ]

Gap between non-adaptive and adaptive Monte Carlo

Non-adaptive randomization (including methods with iid info)
can be worse than adaptive randomization for large problems:

Theorem (K, Novak, Wnuk 2023%*)

For m = [Cexp(an®)| with suitable C,a > 0, we obtain the gap

e (n, 0 — 43) _ [logn
p = .
eran,nona a(njgin N gén) n
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New results

[e]ele] ]

Gap between non-adaptive and adaptive Monte Carlo

Non-adaptive randomization (including methods with iid info)
can be worse than adaptive randomization for large problems:

Theorem (K, Novak, Wnuk 2023%*)

For m = [Cexp(an®)| with suitable C,a > 0, we obtain the gap

e (n, 0 — 43) _ [logn
p = .
eran,nona a(njgin N gén) n

Heinrich (2022/23) showed a similar gap of order &7

NG
for parametric integration and standard info (function evaluation).

Here: Larger gap but for general info (linear functionals)
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Merci pour votre attention.

Des questions?
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