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Complexity of sampling

Goal: Approximately sample from a distribution π(dx) ∝ exp(−f(x))dx, f : Rd → R

Applications: Bayesian learning, inverse problems and score-based generative
models

Question: For a given algorithm, what is the computational complexity?

Particular interest in high-dimensional setting
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Langevin Monte Carlo (LMC)

Langevin diffusion:
dXt = −∇f(Xt)dt +

√
2 dBt.

Stationary with respect to π

Approximate using the Euler-Maruyama scheme:

xk+1 = xk − η∇f(xk) +
√

2η ξk+1, ξk ∼ N(0, Id).

Bridge between sampling and optimization
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Recent history of LMC

– Strongly log-concave setting (TV) [Durmus & Moulines 2016, Dalalyan 2017]

– Dissipative setting (Wasserstein) [Cheng et al. 2019]

– Logarithmic Sobolev inequality (KL) [Vempala & Wibisono 2019]

– Poincaré inequality (Renyi) [Erdogdu et al. 2020, Chewi et al. 2021]

Little known about LMC in heavy-tailed settings...
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Heavy-tailed measures

π(dx) ∝ e−f(x) dx is heavy-tailed if ∥∇f(x)∥ → 0, as ∥x∥ → ∞
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Convergence rates and tail-growth

Logarithmic Sobolev inequality:

Entπ(φ) ≤ 2CLSI

∫
∥∇φ(x)∥2 π(dx), for all φ ∈ C∞

c (Rd) (LSI)

⇐⇒ d
dt

D(ρt∥π)
∣∣∣
t=0

≤ − 2
CLSI

D(ρ0∥π), for all ρ0 ∈ H(Rd)

Characterises exponential decay in KL divergence
But, (LSI) implies sub-Gaussian concentration [Bakry et al. 2014]

[Roberts & Tweedie 1996]:
Tails heavier than exponential =⇒ diffusion not exponentially ergodic
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Slow start behaviour
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
TF, A Mousavi-Hosseini, Y He, K Balasubramanian, MA Erdogdu (2023)

Result (informal)

Suppose there exists α ∈ [0,2] such that ∥∇f(x)∥ = O(∥x∥α−1) and there exists k ∈ N,
q, q′,∆0 ∈ (1,∞) such that for all ρ0 ∈ P(Rd),

Rq′(ρ0∥π) ≤ ∆0 =⇒ Rq(ρk∥π) ≤ 1.

Then, when η is sufficiently small, it must hold that
α = 2 : kη ≳ ln(∆0),

α ∈ (0,2) : kη ≳ d1−α/2∆
(2−α)2

2α
0 ,

α = 0 : kη ≳ d exp(∆0/ν),
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New diffusion

Summary: the Langevin diffusion is slow on heavy-tailed targets

Idea: Consider a different diffusion
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Weighted LSI

Generalisation of LSI that uses a weighting function κ : Rd → R+:

Entπ(φ) ≤ 2CLSI

∫
κ(x)∥∇φ(x)∥2 π(dx), for all φ ∈ C∞

c (Rd).

Characterises exponential decay for the weighted Langevin diffusion,

dXt = −κ(Xt)∇f(Xt)dt +∇κ(Xt)dt +
√

2κ(Xt)dBt. (1)

Satisfied by a variety of heavy-tailed measures:
E.g. generalized Cauchy, s-concave and subexponential

P Cattiaux et al. (2010); P Cattiaux, A Guillin, LM Wu (2011); SG Bobkov, M
Ledoux (2009)
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Discretisation

Difficult to approximate this diffusion

– Coefficients κ∇f , ∇κ and κ are non-globally Lipschitz

– Euler-Maruyama scheme blows up in finite time as η → 0

– Non-constant diffusion coefficient

Idea: Use an adaptive Euler-Maruyama scheme
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Adaptive step-size and time-change

Can simulate using a time-change/adaptive step-size:

dXt = −κ(Xt)∇f(Xt)dt +∇κ(Xt)dt +
√

2κ(Xt)dBt

dYt =
(
−∇f(Yt) +∇ lnκ(Yt)

)
dt +

√
2 dBt

dϕt = κ(Yt)
−1dt

Due to B Öksendal (1990): Xt ≃ Yϕ−1(t)
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Langevin Monte Carlo

Input: potential f , initial y0 ∼ ρ0

For each iteration, k ≤ kmax:

(i) Update iterate: yk = yk−1 − η∇f(yk−1) +
√

2η ξk

(ii) Collect the sample yk
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Our algorithm

Input: potential f , initial y0 ∼ ρ0, weighting function κ

For each iteration, k ≤ kmax:

(i) Update iterate: yk = yk−1 − η∇f(yk−1) + η∇ lnκ(yk−1) +
√

2η ξk

(ii) Collect the sample yk
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Our algorithm

Input: potential f , initial y0 ∼ ρ0, weighting function κ

For each iteration, k ≤ kmax, such that ϕk−1 ≤ ϕmax:

(i) Update iterate: yk = yk−1 − η∇f(yk−1) + η∇ lnκ(yk−1) +
√

2η ξk

(ii) Update clock: ϕk = ϕk−1 + ηκ(yk−1)
−1

(iii) If ⌊ϕk/η⌋ > ⌊ϕk−1/η⌋, collect the sample yk
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– Discretisation of the SDE dXt = −κ(Xt)∇f(Xt)dt +∇κ(Xt)dt +
√

2κ(Xt)dBt

– Adaptive EM discretisation with step-size ∝ κ(x)−1.
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Our algorithm

Input: potential f , initial y0 ∼ ρ0, weighting function κ

For each iteration, such that ϕk−1 ≤ ϕmax:

(i) Update iterate: yk = yk−1 − η∇f(yk−1) + η∇ lnκ(yk−1) +
√

2η ξk

(ii) Update clock: ϕk = ϕk−1 + κ(yk−1)
−1

(iii) If ⌊ϕk⌋ > ⌊ϕk−1⌋, collect the sample yk

– Generalisation of LMC: κ ≡ 1 recovers LMC

– κ is chosen according to the tail-growth of the target
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How to choose κ?

Using the framework of functional inequalities
E.g. Bakry calculus, Lyapunov conditions, bounded perturbations, ...

Target density κ(x)

exp(−∥x∥α), α ∈ (0,2] ∥x∥2−α

(1 + ∥x∥2)−
d+ν

2 (1 + ∥x∥2)2

V(x)−(d+α), V convex, α > 0 (1 + ∥x∥2) log(e + ∥x∥2)
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Analysis: assumptions

(A1) Weighted LSI with weighting κ : Rd → R≥1 satisfying κ(x) ≤ c(1 + ∥x∥2)r/2

for some c, r ≥ 0

(A2) (Moments) There exists p ∈ (r,∞) such that σp = π(∥ · ∥p)1/p < ∞

(A3) ∇ lnκ is L-Lipschitz and D2f ≤ Mκ1/2 holds a.e. for some c ∈ R+
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Analysis: continuous-time algorithm

Result (simplified)

Suppose (A1)–(A3) hold, 1 < α∗ < p/r and

ϕmax ≥ ln
(4Rα(ρ0∥π)

ε

)αCLSI

2
, tmax ≥ 4ϕmaxε

−1
(

8(α− 1) ∨ exp((α− 1)Lϕmax)
))

for some ε > 0, then Rα(ρ
tmax
ϕmax

∥π) ≤ ε.

E.g. for Rα(ρ0∥π) ≥ 1, it is sufficient to have

tmax = Θ̃(ε−(αCLSI/2+1)Rα(ρ0∥π)αCLSI/2)
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Analysis: discrete-time algorithm

Result (simplified)

Let q ≤ 2p and consider the same setting with α = 2, and assume further that

η ≤ (M + L)−1d−1t−2
maxε

2,

and kmax = ⌊tmax/η⌋, Wq(ρ̂
kmax
ϕmax

, π) ≤ σpε.

E.g. for R2(ρ0∥π) ≥ 1, it is sufficient to have

kmax = Θ̃(ε−(3αCLSI/2+5)R2(ρ0∥π)3CLSId(M + L))
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Example: generalized Cauchy

π(dx) ∝ (1 + ∥x∥2)−
d+ν

2 dx, ν > 2

– LMC: O
(

d5ε−4/ν+1 exp
[
4(2q − 1)ν−1R∞(ρ0∥π)

])
in Renyi

– TULA: Õ(e2ddd+1ε−1 ln(D(ρ0∥π)ε−1)) in KL

– Our work: Õ((d + ν)6d4ε−17/4Rα(ρ0∥π)) for ν > 6 using κ(x) = (1 + ∥x∥2)2
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Geometry of the diffusion

dXt =
(
− κ(Xt)∇f(Xt) +∇κ(Xt)

)
dt +

√
2κ(Xt)dBt

=⇒ Riemannian Langevin diffusion on (Rd, δij/κ)

κ(x) = (1 + ∥x∥2)2 =⇒ metric induced by stereographic projection
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Geometry of the algorithm

Sampling methods that induce a Riemannian structure:

– Standard LMC: G = δij

– Our algorithm: G = (κ)−1δij

– Mirror LMC: G = (D2Φ)−1δij

– Variable transformation with h : (M, g) → Rd: G = (h−1) ∗ g

Variable transformation geometry ⊆ weighted geometry G = (κ)−1δij
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Summary

– We propose a generalisation of LMC that can adapt to different tail-growths

– Based on weighted functional inequalities and adaptive EM

– Analysis gives polynomial dependence on d and ε−1 and initial Renyi in
heavy-tailed settings

Future directions Riemmanian LMC based on Adaptive EM schemes:

– Simulating Riemannian Langevin diffusions based on adaptive EM schemes

Super light-tailed targets
Non-smooth potentials
Sampling from Riemannian manifolds

– Design accept/reject mechanism


