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Deforming Boundary Conditions

First Part

Deforming Periodic Boundary Conditions
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Deforming Boundary Conditions

NEMD

Study molecular fluids under steady flow
[Evans and Morriss(2007),Todd and Daivis(2017)]

Motivation: simulation of micro-scale fluid motion with local strain
rate ∇u ∈ R3×3

Background flow matrix A

Special challenges in formulating the PBCs for NEMD due to
deforming simulation cell
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Deforming Boundary Conditions

Simulation Box

Three linearly independent vectors define our simulation box and PBCs:

Lt =
[
v1t v2t v3t

]
∈ R3×3, t ∈ [0,∞).

Unit cell Image cell

(q,p) (q+ Ltn,p+ ALtn)
d
dtq = p d

dt (q+ Ltn) = p+ ALtn

Simulation box deforms with the background flow

d

dt
Lt = ALt =⇒ Lt = eAtL0

Warning: A particle can become arbitrarily close to its image depending
on geometry.
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Deforming Boundary Conditions

Remapping PBCs

There is freedom in choosing a lattice basis. For any M ∈ SL(3,Z), LtM
and Lt generate the same lattice

Lattice Remapping Algorithms:

1 Carefully choose L0, so that we can use automorphisms so that LtMt

stays bounded.

2 In fact, M will tell us how to choose L0.

3 Minimum distance between a particle and its images

d = inf
n∈Z3\0
t∈R≥0

||LtMn||2 > 0.
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Deforming Boundary Conditions

PBCs

Existing Algorithms:

Lees-Edwards for Planar Shear Flows

Kraynik-Reinelt for Planar Elongational Flows

Generalized KR for (non-defective) Three-Dimensional Flows

Our analysis focuses on the two planar flow types.

(Appendix) Improving the Three-Dimensional Case

Rotating Algorithm

Comparison of the Three-Dimensional Flow Algorithms

UMASS 7 / 38



Deforming Boundary Conditions Planar Flows

Shear Flow: Lees-Edwards PBCs

Background flow

A =

0 ϵ 0
0 0 0
0 0 0

.
Lt is highly sheared as t becomes large

Lt = etAL0 =

1 tϵ 0
0 1 0
0 0 1

L0, where L0 =

1 0 0
0 1 0
0 0 1

.
Interparticle interaction computation becomes more difficult
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Deforming Boundary Conditions Planar Flows

Shear Flow: Lees-Edwards PBCs

Mn =

1 −1 0
0 1 0
0 0 1

n

=

1 −n 0
0 1 0
0 0 1

, n ∈ Z.

Remapped lattice

LtM
n =

1 tϵ− ⌊tϵ⌉ 0
0 1 0
0 0 1

 = e [t]AL0,

{
[t] ≡ t mod T

n = −
⌊
t
T

⌉
, T = 1

ϵ

Periodic domain

L̂t = {e [t]AL0x
∣∣x ∈ T3}, where T3 = R3\Z3.
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Deforming Boundary Conditions Planar Flows

Shear Flow: Lees-Edwards PBCs
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Deforming Boundary Conditions Planar Flows

Planar Elongational Flow: Kraynik & Reinelt PBCs

Background flow

A =

−ϵ 0 0
0 ϵ 0
0 0 0


Simulation box shrinks in x direction and stretches y direction

M = VΛV−1, Λ =

λ 0 0
0 λ−1 0
0 0 1

, 0 < λ < 1

M =

 2 −1 0
−1 1 0
0 0 1

 and L0 = V−1

LtM
n = e [t]AL0, n = −

⌊ t

T

⌉
, T =

log(λ)

ϵ
.
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Deforming Boundary Conditions Planar Flows

Planar Elongational Flow: Kraynik & Reinelt PBCs
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Deforming Boundary Conditions Three-Dimensional Flows

General 3d Flow: GenKR PBCs Dobson & Hunt

Background flow

A =

ϵ1 0 0
0 ϵ2 0
0 0 −ϵ1 − ϵ2

.
M1,M2 ∈ SL(3,Z) are commutative automorphism matrices which have
positive eigenvalues

Mi = VΛiV
−1, ω̂i = log Λi , A = δ1ω̂1 + δ2ω̂2

L0 = V−1

LtM
n1
1 Mn2

2 = eAtV−1,

At = tA+ n1ω̂1 + n2ω̂2 = (tδ1 − ⌊tδ1⌉)ω̂1 + (tδ2 − ⌊tδ2⌉)ω̂2
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Deforming Boundary Conditions Three-Dimensional Flows

General 3d Flow: GenKR PBCs D. & Hunt
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Ergodicity of NELD Under Planar Flow

Part Two

Convergence of NELD: Planar Flows
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Ergodicity of NELD Under Planar Flow

NELD

The Nonequilibrium Langevin Dynamics is derived in:
- [McPhie, Daivis, Ennis, Snook, Evans, Physica A 2001],
- [D., Legoll, Lelièvre, Stoltz, M2AN 2013]{

dq = pdt,

dp = −∇V (q)dt − γ(p− Aq)dt + Apdt + σdW
,

NELD in terms of the relative momentum{
d q̂ = (p̂+ Aq̂)dt,

d p̂ = −∇V (q̂)dt − γp̂dt + σdW
, (q̂, p̂) ∈ L̂d

t × R3d ,

σ2 = 2γ
β the fluctuation coefficient

β the inverse temperature

γ the dissipation coefficient

V ∈ C∞ the potential
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Ergodicity of NELD Under Planar Flow

Equilibrium Langevin Dynamics Equation

Equilibrium Langevin Dynamics{
dq = pdt,

dp = −∇V (q)dt − γpdt + σdW
, (q,p) ∈ Ld

0 × R3d

Boltzmann-Gibbs distribution

ν(q,p)dqdp =
1

Z
e−βH(q,p)dqdp,

Z =
∫
Ld
0×R3d e

−βH(q,p)dqdp

H(q,p) = 1
2⟨p,p⟩+ V (q)

Motivation: Can we establish the convergence of a limiting measure for
the NELD in the moving domain?
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Ergodicity of NELD Under Planar Flow

Convergence of NELD to a Limit Cycle

We employ a technique similar to [Joubaud, Pavliotis, Stoltz, J. Stat.
Phys. 2015] which examined time and space-periodic external forcing.

Steps of the proof:

1 Markov Chain Generator

2 Regularity

3 Invariant Measure of the Discrete Process

4 Convergence of the NELD

Key Intuitions:

1 Discrete time process between remapping times kT to (k + 1)T maps
from L0 to L0.

2 Generator is smooth in between remappings.

3 Remapping is continuous function, while trajectories discontinuous.
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Ergodicity of NELD Under Planar Flow Markov Chain Generator

Markov Chain Generator

Steps of the proof:

1

Markov Chain Generator

Transition Functions

Generator

2 Regularity

3 Invariant Measure of the Discrete Process

4 Convergence of the NELD
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Ergodicity of NELD Under Planar Flow Markov Chain Generator

Markov Process Generator

NELD in vector form
dX̂t = b̂(X̂t)dt + Σ̂dWt , X̂t ∈ L̂d

t × R3d , t ∈ [kT , (k + 1)T ),

X̂t =

[
q̂

p̂

]
, b̂(X̂t) =

[
p̂+ Aq̂

−∇V (q̂)− γp̂

]
, Σ̂ =

[
0 0

0 σ

]
,

Density transition function

P̂t,s(ŷ, B̂t) = P
(
X̂t ∈ B̂t

∣∣X̂s = ŷ
)
=

∫
B̂t

ψ̂(t, x̂
∣∣s, ŷ)d x̂,

ψ̂(t, x̂ |s, ŷ)
∣∣∣
t=s

= δ(x̂− ŷ), B̂t ∈ B(L̂d
t × R3d)

Es,y [̂ft(X̂t)] =

∫
L̂d
t ×R3d

f̂t(x̂)ψ̂(t, x̂
∣∣s, ŷ)d x̂
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Ergodicity of NELD Under Planar Flow Regularity

Regularity

Steps of the proof:

1 Markov Chain Generator

2

Regularity

Smoothness of the Transition Probability

Positivity of the Transition Probability

3 Invariant Measure of the Discrete Process

4 Convergence of the NELD
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Ergodicity of NELD Under Planar Flow Regularity

Regularity

Regularity proof:

Smoothness of the Transition Probability

* Markov Process Generator in a Fixed Domain

* Infinitesimal Generator

* Hypoellipticity

* Kolmogorov Equation

Positivity of the Transition Probability
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Ergodicity of NELD Under Planar Flow Regularity

Markov Process Generator in a Fixed Domain

Change of variables{
q̂t = e [t]Aqt

p̂t = e [t]Apt
, (q,p) ∈ Ld

0 × R3d , (q̂, p̂) ∈ L̂d
t × R3d .

NELD in the fixed domain{
dqt = ptdt,

dpt = −e−[t]A∇V
(
e [t]Aqt

)
dt − Γptdt + σe−[t]AdWt

,
t

T
/∈ Z,

where Γ = A+ γ.


dXt = bt(Xt)dt +ΣtdWt ,

t
T /∈ Z, Xt ∈ Ld

0 × R3d

Xt =

[
q

p

]
,bt(Xt) =

[
p

−e−[t]A∇V (e [t]Aq)− Γp

]
,Σt =

[
0 0

0 σe−[t]A

]
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Ergodicity of NELD Under Planar Flow Regularity

Markov Process Generator in a Fixed Domain

Φt : Ld
0 × R3d → L̂d

t × R3d

[
q̂t
p̂t

]
=

[
e [t]A 0

0 e [t]A

] [
qt
pt

]
.

Generator in the fixed domain

ϕt,s(s, y) = Es,y(ft ◦ Φt)(Xt) =

∫
Ld
0×R3d

(ft ◦ Φt)(x)ψ(t, x
∣∣s, y)dx

Infinitesimal Generator

G = X 0 +
1

2

d∑
i=1

X i , for 1 ≤ i ≤ d ,

X 0 = ⟨p,∇q·⟩ −
〈
e−[t]A∇V (e [t]Aq),∇p·

〉
− ⟨Γp,∇p·⟩

X i =
√
σ2sj ,i∂pi , (sj ,i ) = e−[t]A(e−[t]A)T .
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Ergodicity of NELD Under Planar Flow Regularity

Smoothness

[Cass et al.(2021)Cass, Crisan, Dobson, and Ottobre]

Lemma 1

If −∂t + G †
t is hypoelliptic and there exists νt(·), t ∈ [kT , (k + 1)T ] s.t.(

− ∂tνt + G †
tνt

)
(·) = 0, then νt(·) ∈ C∞

Lemma 2

The Markov process generator of Xt and X̂t are smooth and we have:

Es,yft(X̂t) = Es,y[(ft ◦ Φt)(Xt)]
t

T
/∈ Z.

∫
Ld
0×R3d

(f ◦ Φt)(x)ψ(t, x
∣∣s, y)dx =

∫
L̂d
t ×R3d

f(x̂)(ψ ◦ Φ−1
t )(t, x̂

∣∣s, ŷ)d x̂
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Ergodicity of NELD Under Planar Flow Regularity

Hypoellipticity

Lemma 3

∂t + G t ,−∂t + G †
t ,

t
T /∈ Z are hypoelliptic.

Lie bracket between two operators C and D

[C ,D ] = C D − DC .

Since for every point (qkT+θ,pkT+θ) ∈ Ld
0 × R3d

[X i ,X 0] =
√
σ2(∂qi + γsi ,j)∂pi , ∀i ∈ {1 . . . d},

evaluated at (q0,p0) span Ld
0 × R3d

G t and G †
t are hypoelliptic using [Hörmander(1987), Theorem 1.1]
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Ergodicity of NELD Under Planar Flow Regularity

Kolmogorov Equation

Lemma 4

[Friedman(1975)] The backward Kolmogorov equation for the NELD is

∂sϕt,s(y) +
(
G sϕt,s

)
(y) = 0, where ψ(t, x |s, y)

∣∣
t=s

= δ(x− y).

Lemma 5

The forward Kolmogorov equation for the NELD is(
− ∂tψ + G †

sψ
)
(t, x

∣∣s, y) = 0.

ν(t, x) =

∫
Ld
0×R3d

ψ(t, x
∣∣s, y)ν(s, y)dy
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Ergodicity of NELD Under Planar Flow Regularity

Regularity

Regularity proof:

Smoothness of the Transition Probability
Positivity of the Transition Probability
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Ergodicity of NELD Under Planar Flow Regularity

Positivity

B̂t can be reached at any time with P̂t,0(ŷ, B̂t) > 0

Control problem

dX̃t

dt
= b(X̃t) + Σ̂

dUt

dt
, X̃t =

[
q̃
p̃

]
∈ L̂d

t × R3d ,

C2 path φ(t) ∈ R3d from Ld
0 × R3d → L̂d

t × R3d

φ(0) = q̃0 φ(t) = q̃t
φ

′
(0) = p̃0 φ

′
(t) = p̃t + Aq̃t

Accessible points At(q̃0, p̃0) = L̂d
t × R3d

[Rey-Bellet(2006), Corollary 6.2]: supp P̂t,0(ŷ, B̂t) is equal to the
closure in the uniform topology of At(q̃0, p̃0)
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

Invariant Measure of the Discrete Process

Steps of the proof:

1 Markov chain Generator

2 Regularity

3

Invariant Measure of the Discrete Process

Uniform Lyapunov Condition

Uniform Minorization Condition

4 Convergence of the NELD
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

The Invariant Measure of the Discrete Process

Discrete Markov chain

(Qk = q̂kT ,Pk = p̂kT ) ∈ Ld
0 × R3d

Discrete generator

(GT f)(Qk ,Pk) = E
(
f(Qk+1,Pk+1)|(Qk ,Pk)

)
,

Lyapunov function

Kn(q̂, p̂) = 1 + ∥p̂∥2n , n ≥ 1

with the associated weighted L∞ norms

∥h∥L∞Kn
=

∥∥∥∥ h

Kn

∥∥∥∥
L∞

.
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

The Invariant Measure of the Discrete Process

[Hairer and Mattingly(2008)]

Theorem 6

If GT satisfies the Lyapunov condition and the minorization condition, then
∃π0 and Cn, λn > 0 for any n ≥ 1 s.t.∥∥∥Gk

T f − f
∥∥∥
L∞Kn

≤ Cne
−kλnT

∥∥f − f
∥∥
L∞Kn

, ∀k ≥ 0,

f =

∫
Ld
0×R3d

f(q̂, p̂)π0(q̂, p̂)d q̂d p̂.
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

Uniform Lyapunov Condition

Lemma 7

There exists an ∈ [0, 1) and bn > 0 such that

GTKn ≤ anKn + bn,

G =
〈
p̂+ Aq̂,∇q̂·

〉
+
〈
−∇V (q̂),∇p̂·

〉
− γ

〈
p̂,∇p̂·

〉
+

1

2
σσT : ∇2.

GKn ≤ −ânKn + b̂n, ân, b̂n ≥ 0

dKn(X̂t) ≤ (−ânKn + b̂n)dt +
〈
∇Kn(X̂t), Σ̂dW

〉
.

E[Kn(Qk+1,Pk+1)] ≤ e−ânTKn(Qk ,Pk) + b̂n/ân.
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

Uniform Minorization Condition

Lemma 8

Fix any pmax > 0, then ∃ prob. meas. ϑ : Ld
0 × R3d → R and cst κ s.t.

∀B ∈ B(Ld
0 × R3d), P

(
(Qk+1,Pk+1) ∈ B

∣∣∣ ∥Pk∥2 ≤ pmax

)
≥ κϑ(B).

[Mat(2002), Lemma 2.3]

Lemma 9

C ∈ B(Ld
0 × R3d) a fixed compact set. There is a choice of tk = kT ,

κ ≥ 0, a prob. meas. ϑ, with ϑ(C c) = 0 and ϑ(C ) = 1 s.t.

Ptk ,0(y,B) ≥ κϑ(B), ∀B ∈ B(Ld
0 × R3d), y ∈ C .
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Convergence of the NELD

Steps of the proof:

1 Markov chain Generator

2 Regularity

3 Invariant Measure of the Discrete Process

4

Convergence of the NELD

Convergence to a limit cycle

Convergence in Law of Large Numbers
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Convergence of the Continuous Process

Proposition 10

The Markov process (q̂t , p̂t) converges exponentially to the limit cycle πθ:∣∣∣Es,y[f(X̂t)]− f([t])
∣∣∣ ≤ Cne

−λnt
∥∥f − f([t])

∥∥
L∞Kn

(
1 +Kn(y)

)
, y = X̂0,

f(θ) =

∫
L̂d
θ×R3d

fθ(q̂, p̂)πθ(q̂, p̂)d q̂d p̂.

[Meyn and Tweedie(1993),Mat(2002)]∣∣∣E0,y[f(X̂kT+θ)]− f(θ)
∣∣∣ ≤ Cne

−λnkT
∥∥f − f(θ)

∥∥
L∞Kn

E0,y[Kn(X̂θ)]

E0,y[Kn(X̂θ)] ≤ e−ânθKn(y) +
b̂n
ân

and Cn →
(
1 +

b̂n
ân

eλnT
)
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Convergence in Law of Large Numbers

Proposition 11

[Meyn et al.(2009)Meyn, Tweedie, and Glynn]

1

N

N∑
k=1

f(q̂kT+θ, p̂kT+θ) −−−−−→
N→+∞

∫
Ld
θ×R3d

f(q̂, p̂)ν(q̂, p̂)d q̂d p̂ a,s. ,

for all the initial conditions (Q0,P0) and any f ∈ L∞Kn
.

(
q̂kT+θ, p̂kT+θ

)
is a positive Harris recurrent simple chain(

Qk ,Pk

)
is irreducible w.r.t to the Lebesgue measure

Every set in the domain is Harris recurrent [Tierney(1994), Cor 1]
1

(
Qk ,Pk

)
is positive recurrent

2
(
Qk ,Pk

)
is absolutely continuous w.r.t Lebesgue meas. ∀

(
Qk ,Pk

)
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Sample for Two Particle Elongational Flow
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