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Non-Uniform Random Number Generation

Given:
I sequence U1, U2, . . . of “truly” IID uniform random numbers.

Task:
I transform into sequence X1, X2, . . . of random variates with given distribution

U1, U2, U3, U4, . . . −→ X1, X2, X3, . . .

Most popular methods:

I Inversion method
I Acceptance-Rejection method
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Automatic Algorithm

Idea:
One algorithm works for a large class of distributions.

I Works for non-standard distributions.

I Generators with known structural properties.

I Can be used by “non-experts” for special problems.

Required:
I PDF, CDF, . . . of the distribution.
I Location of mode, “main part”, . . . of the distribution.
I . . .
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Automatic Algorithm – Wishlist

I Fast.

I Exact (at least in R).

I We can control the properties (accuracy, efficiency, . . . ) of the algorithm.

I Uses as few information as possible about distribution.

I User interface for a library implementation should be as simple as possible.

(Complexity of algorithm should be hidden from user.)

Here: We assume that only the (log-)PDF f and its derivative are given.
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Inversion Method

If U ∼ U (0, 1), then

X = F−1(U) = inf {x : F(x) ≥ U} ∼ F

1. Generate U ∼ U(0, 1).
2. Compute X = F−1(U). ⇐ Problem (?)

3. Return X.
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Inversion Method

Advantages:

I Most general method for generating non-uniform random variates.
I Get one random variate X for each uniform U.
I Preserves the structural properties of the underlying uniform PRNG.

Disadvantages:

I CDF and/or its inverse often not given in closed form.
I Numerical methods may be slow and/or require large tables.
I Numerical methods are not exact.
I There are issues with poles.

Derflinger et al. (2010) propose an inversion algorithm, when only the PDF is known.
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Acceptance-Rejection Method

Need hat h and squeeze s, s.t.

s(x) ≤ f (x) ≤ h(x)

1. Generate X ∼ h.

2. Generate U ∼ U(0, 1).
3. If U · h(X) ≤ s(X)

4. Return X.

5. If U · h(X) ≤ f (X),

6. Return X.

7. Else try again.

h(x)

f (x)

s(x)
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Acceptance-Rejection

Requirements:

I Hat function h must be a multiple of some PDF.

Properties:

I Works for unnormalized PDFs.
I Performance parameter: rejection constant.

Wishlist:

I h ≈ f
I Sampling X ∼ h should be fast and simple (ideally by inversion).
I Evaluation of squeeze s should be cheap.
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Acceptance-Rejection – Rejection Constant

Rejection constant:

α =

∫
R

h(x) dx∫
R

f (x) dx

Ratio hat-squeeze:

ρ =

∫
R

h(x) dx∫
R

s(x) dx

ρ ≥ α ≥ 1

h(x)

f (x)

s(x)
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Transformed Density Rejection

Devroye (1984): tangents and secants to construct hat h(x) and squeeze s(x) for
log-concave PDFs.

••

•• ••

••

log-scale original scale
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Transformed Density Rejection

Gilks and Wild (1992): adaptive rejection sampling

••

•• ••

••

log-scale original scale

ρ→ 1 for N → ∞
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Transformed Density Rejection

Gilks and Wild (1992): adaptive rejection sampling

••

••

•

••

••

•

log-scale original scale

ρ→ 1 for N → ∞
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Transformed Density Rejection – Algorithm

1. Start with an initial partition.

2. Repeat:

3. Compute h(x) and s(x) for each subinterval.

4. Split every subinterval I where the
∫

I(h(x)− s(x))dx is too large.

5. Until ρ is as small as desired.

6. Run acceptance-rejection loop.
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Transformed Density Rejection – Properties

I Requires PDF f and derivative f ′.
I Performance can be controlled by input parameter ρ.

For ρ ≈ 1 we find:

I Possibly expensive setup.
I (Very) fast marginal generation time (hardly depends on f .)
I Generation from hat is O(1)

(by guide table or alias method.)
I Algorithm close to inversion.

Disadvantage: Restricted to log-concave distributions!

MCM 2023 – Paris Leydold & Hörmann – Tinflex – 13 / 34



Transformed Density Rejection – Properties

I Requires PDF f and derivative f ′.
I Performance can be controlled by input parameter ρ.

For ρ ≈ 1 we find:

I Possibly expensive setup.
I (Very) fast marginal generation time (hardly depends on f .)
I Generation from hat is O(1)

(by guide table or alias method.)
I Algorithm close to inversion.

Disadvantage: Restricted to log-concave distributions!

MCM 2023 – Paris Leydold & Hörmann – Tinflex – 13 / 34



T-concave Distributions

Hörmann (1995): Generalizes to Tc-concave distribution, i.e., Tc ◦ f is concave.

Tc(x) =

{
log(x) for c = 0
sgn(c)xc for c 6= 0

I If f is Tc1-concave, then it Tc2-concave for all c2 ≤ c1.

I Hat and squeeze are piecewise exponential or power functions.

I In transformed scale and c 6= 0: hat and squeeze must not intersect x-axis.
I For unbounded intervals: c > −1.
I For unbounded f (pole): c < −1.
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T-convex

Obviously the idea also works for Tc-convex distributions with the roles of tangents
and secants exchanged (Evans and Swartz, 1998).

Idea: Split domain into intervals where f is either Tc-concave or Tc-convex.

Issues:

I Need f ′′.
I Have to compute inflection points of transformed density Tc ◦ f .

I Is the API still simple?
I Is the algorithm still exact when we have to apply root finding algorithms?

I Can be replace the exact position of inflection points by a rough estimate?
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A Rough Estimate

Botts, Hörmann, and L (2012):

I Suppose we have a subdivision into intervals.
I Assume that there is at most one inflection point of the Tc ◦ f in each

subinterval [bl, br].

I Then only the four cases below are possible (plus their symmetric analogs).
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Possible Cases

bl br

f̃

t̃l

t̃r
r̃

bl br

f̃

t̃l
t̃r

r̃

bl br

f̃

t̃l

t̃r

r̃

bl br

f̃

t̃l
t̃r

r̃

(Ia) (IIa) (IIIa) (IVa)
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Possible Cases

Botts et al. (2012):

I Each interval belongs to (at most) one of these 4+4 types.

I In all cases we can use tangents and secants
for constructing hat and squeeze.

I The type can be determined by the inequalities below.
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Detect Cases I

Type f̃ ′ and R f̃ ′′ squeeze and hat

Ia f̃ ′(bl), f̃ ′(br) ≥ R f̃ ′′(bl) ≤ 0 ≤ f̃ ′′(br) t̃r(x) ≤ f̃ (x) ≤ t̃l(x)

IIa f̃ ′(bl) ≥ R ≥ f̃ ′(br) f̃ ′′(bl) ≤ 0 ≤ f̃ ′′(br) r̃(x) ≤ f̃ (x) ≤ t̃l(x)

IIIa f̃ ′(bl) ≤ R ≤ f̃ ′(br) f̃ ′′(bl) ≤ 0 ≤ f̃ ′′(br) t̃r(x) ≤ f̃ (x) ≤ r̃(x)

IVa f̃ ′(bl) ≥ R ≥ f̃ ′(br) f̃ ′′(bl), f̃ ′′(br) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃l(x), t̃r(x)

Observe: We need the slope of the secant:

R =
f̃ (br)− f̃ (bl)

br − bl
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Detect Cases II

Type f̃ ′ and R f̃ ′′ squeeze and hat

Ib f̃ ′(bl), f̃ ′(br) ≤ R f̃ ′′(bl) ≥ 0 ≥ f̃ ′′(br) t̃l(x) ≤ f̃ (x) ≤ t̃r(x)

IIb f̃ ′(bl) ≥ R ≥ f̃ ′(br) f̃ ′′(bl) ≥ 0 ≥ f̃ ′′(br) r̃(x) ≤ f̃ (x) ≤ t̃r(x)

IIIb f̃ ′(bl) ≤ R ≤ f̃ ′(br) f̃ ′′(bl) ≥ 0 ≥ f̃ ′′(br) t̃l(x) ≤ f̃ (x) ≤ r̃(x)

IVb f̃ ′(bl) ≤ R ≤ f̃ ′(br) f̃ ′′(bl), f̃ ′′(br) ≥ 0 t̃l(x), t̃r(x) ≤ f̃ (x) ≤ r̃(x)

Observe: We still need f ′′! Can we avoid this?
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Avoid 2nd Derivative I

Some cases are unique:

Case f̃ ′ and R Type

(1) f̃ ′(bl), f̃ ′(br) ≥ R (Ia)

(2) f̃ ′(bl), f̃ ′(br) ≤ R (Ib)

If neither (1) nor (2) holds we need an additional test point p ∈ (bl, br).
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Avoid 2nd Derivative II

Case f̃ ′ and R f̃ (p) Type

(3) f̃ ′(bl) ≥ R ≥ f̃ ′(br) —

(3.1) f̃ ′(p) ≤ f̃ ′(br) (IIa)

(3.2) f̃ ′(p) ≥ f̃ ′(bl) (IIb)

(3.3) f̃ ′(bl) ≥ f̃ ′(p) ≥ f̃ ′(br) —

(3.3.1) f̃ (p) > t̃l(p) (IIb)

(3.3.2) f̃ (p) > t̃r(p) (IIa)

(3.3.3) f̃ (p) ≤ t̃l(p), t̃r(p) (IIb | IVa) + (IIa | IVa)
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Avoid 2nd Derivative III

Case f̃ ′ and R f̃ (p) Type

(4) f̃ ′(bl) ≤ R ≤ f̃ ′(br) —
...

(4.3) f̃ ′(bl) ≤ f̃ ′(p) ≤ f̃ ′(br) —
...

(4.3.3) f̃ (p) ≥ t̃l(p), t̃r(p) (IIIa | IVb) + (IIIb | IVb)

“(IIIa | IVb) + (IIIb | IVb)” means that we have to
split [bl, br] into two subintervals of the respective types.
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Combined Types

We now cannot decide between some case:

Type f̃ ′ and R f̃ ′′ squeeze and hat

IIa | IVa f̃ ′(bl) ≥ R ≥ f̃ ′(br) f̃ ′′(bl) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃l(x)

IIb | IVa f̃ ′(bl) ≥ R ≥ f̃ ′(br) f̃ ′′(br) ≤ 0 r̃(x) ≤ f̃ (x) ≤ t̃r(x)

IIIa | IVb f̃ ′(bl) ≤ R ≤ f̃ ′(br) f̃ ′′(br) ≥ 0 t̃r(x) ≤ f̃ (x) ≤ r̃(x)

IIIb | IVb f̃ ′(bl) ≤ R ≤ f̃ ′(br) f̃ ′′(bl) ≥ 0 t̃l(x) ≤ f̃ (x) ≤ r̃(x)

Nevertheless we still can construct hat and squeeze.
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Sign of 2nd Derivative

I Once the type of the interval is known, we can use the above tables to
determine the sign of f ′′(bl) and/or f ′′(br).

I Then for any two points c, c + δ in (bl, br),
the sign can be determined for at least one of f ′′(c) and f ′′(c + δ).

I This allows to determine the type when an interval is splitted at c or c + δ
during the setup.

I In particular we thus get rid of the combined types.
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Poles

Let p be a pole of f .
Then the secant of Tc ◦ f on a small interval [p, br] can be used for constructing a
hat function whenever

−1 > c > lim sup
x→p

lc f (x)

where

lc f (x) = 1− f ′′(x) f (x)
f ′(x)2

(local concavity).

Work in progress. We test whether the method from Hörmann, L, and Derflinger
(2007) can be used to find an appropriate c.
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Examples

Generalized Hyperbolic distribution has PDF

f (x) = eβ(x−µ)
Kλ−1/2

(
α
√

δ2 + (x− µ)2
)

(√
δ2 + (x− µ)2/α

)1/2−λ
,

where Kν(.) denotes the modified Bessel function of the third kind.

For c = −1/2,
T−1/2 ◦ f may have a single convex interval on one or both sides of the mode.
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Examples

Watson distribution has PDF

f (x) ∝ exp
(
κµ′x

)
on Sd = {x : ‖x‖2 = 1}

It can be decomposed as X =
(√

1−W2Y, W
)

, where Y is uniformly distributed

on the hypersphere orthogonal to µ and W has log-density

g(w) = κw2 +
d− 3

2
log
(

1− w2
)

on domain [0, 1].
It can be easily shown that log ◦g has at most one inflection point.
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Examples

. . . and of course it works for all truncated distributions
whenever it works on its entire domain.
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Tinflex

The method is implemented in R package Tinflex:

https://CRAN.R-project.org/package=Tinflex

MCM 2023 – Paris Leydold & Hörmann – Tinflex – 30 / 34



Conclusion

I We have created an automatic algorithm based on the acceptance-rejection
method for quite general continuous univariate distributions.

I Requirements: (log-)PDF, its derivative, a partition of the domain s.t. each
subinterval contains at most one inflection point of the transformed density.

I We avoid the computation of inflection points and f ′′.

I Simpler interface for user . . .

I . . . but higher complexity for the implementation
(mostly look-ups in tables of satisfied inequalities).
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Thank You
for your attention!
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