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Deforming Boundary Conditions

First Part
Deforming Periodic Boundary Conditions J
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NEMD

@ Study molecular fluids under steady flow
[Evans and Morriss(2007), Todd and Daivis(2017)]

@ Motivation: simulation of micro-scale fluid motion with local strain
rate Vu € R3%3

@ Background flow matrix A

Shear Elongational
—..' -l Ny
-—

o ———— ] e
~— N | S
@ Special challenges in formulating the PBCs for NEMD due to
deforming simulation cell
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Deforming Boundary Conditions

Simulation Box

Three linearly independent vectors define our simulation box and PBCs:

Le=[vi v vi] e RS, t € [0, 00).
Unit cell ‘ Image cell
(a,p) (@+ Ln,p+ ALin)

4q=p | L(q+Ln)=p+ALn

Simulation box deforms with the background flow

d
L, = AL L, = e™L
dtt t = Lt=¢€ Lo

Warning: A particle can become arbitrarily close to its image depending
on geometry.
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Remapping PBCs

There is freedom in choosing a lattice basis. For any M € SL(3,Z), L:M
and L; generate the same lattice

Lattice Remapping Algorithms:

© Carefully choose Ly, so that we can use automorphisms so that L; M,
stays bounded.

@ In fact, M will tell us how to choose Lg.
© Minimum distance between a particle and its images
d= inf [|LMn]], > 0.

ncZ3\0
teR>0
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PBCs

Existing Algorithms:
o Lees-Edwards for Planar Shear Flows
o Kraynik-Reinelt for Planar Elongational Flows

e Generalized KR for (non-defective) Three-Dimensional Flows

Our analysis focuses on the two planar flow types.

(Appendix) Improving the Three-Dimensional Case
@ Rotating Algorithm

@ Comparison of the Three-Dimensional Flow Algorithms
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Planar Flows
Shear Flow: Lees-Edwards PBCs

Background flow

A—

o O o
OO ™
o O O

L; is highly sheared as t becomes large

te

1 0 100
Ly =e%Ly= |0 0| Lo, where L= {0 1 0f.
0 1 001

1
0

Interparticle interaction computation becomes more difficult
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Deforming Boundary Conditions Planar Flows

Shear Flow: Lees-Edwards PBCs

1 -1 0
MT=10 1 O
0 0 1
Remapped lattice
1 te—|te] O
LtMn - O 1
0 0 1

Periodic domain

UMASS
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[t]=tmod T

1

L, = {e[t]ALox}x € T3}, where T3 = R3\Z3.

T

1

€



Planar Flows
Shear Flow: Lees-Edwards PBCs

Time 0.10226
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Planar Flovs
Planar Elongational Flow: Kraynik & Reinelt PBCs

Background flow

—e 0 0
A=10 € 0
0 00
Simulation box shrinks in x direction and stretches y direction
A 0 O
M=VAV™Y A=10 X' 0f, 0<A<1
0 0 1
2 -1 0

and Ly=V!

Il
o |

—
O =
= O

I
LtMn _ e[t]ALO, n—= — Li} , T — Og()\)
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Ranadiozs
Planar Elongational Flow: Kraynik & Reinelt PBCs

Time 0.10226
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Three-Dimensional Flows
General 3d Flow: GenKR PBCs Dobson & Hunt

Background flow

eg O 0
A=10 e 0
0 0 —€—e

My, M, € SL(3,Z) are commutative automorphism matrices which have
positive eigenvalues

M; = VAN V™Y Oi=logh;, A= 68101+ 62l

Lo=V1

LeMPMy? = eVt
At =tA+ nldzl —+ n2(:<\12 = (t51 — Lt51—|)(2}1 + (t52 — Lt(52—| )(2)2
)



Three-Dimensional Flows
General 3d Flow: GenKR PBCs D. & Hunt

Time 0.025564
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Ergodicity of NELD Under Planar Flow

Part Two
Convergence of NELD: Planar Flows
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NELD

The Nonequilibrium Langevin Dynamics is derived in:
- [McPhie, Daivis, Ennis, Snook, Evans, Physica A 2001],
- [D., Legoll, Leliévre, Stoltz, M2AN 2013]

dq = pdt,
dp = —-VV(q)dt — ~v(p — Aq)dt + Apdt + cdW’
NELD in terms of the relative momentum

dq = (p + Ad)dt o
{q (b + Ade, (@,p) € £ x R¥,

dp = -VV(q)dt — ypdt + cdW’
@ 02 = %7 the fluctuation coefficient

@ [ the inverse temperature
@ ~ the dissipation coefficient
@ V € C® the potential
16 / 38



Ergodicity of NELD Under Planar Flow

Equilibrium Langevin Dynamics Equation

Equilibrium Langevin Dynamics

dq = pdt,

, (a,p) € LJ xR
dp = -VV(q)dt — ypdt + ocdW

Boltzmann-Gibbs distribution

7 = fﬁngM e PH@P) dqdp

H(a,p) = 3(p,p) + V(q)

Motivation: Can we establish the convergence of a limiting measure for
the NELD in the moving domain?

1
v(a,p)dadp = S e~ "3 dqdp,
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Convergence of NELD to a Limit Cycle

We employ a technique similar to [Joubaud, Pavliotis, Stoltz, J. Stat.
Phys. 2015] which examined time and space-periodic external forcing.
Steps of the proof:

@ Markov Chain Generator

@ Regularity

© Invariant Measure of the Discrete Process

@ Convergence of the NELD

Key Intuitions:

@ Discrete time process between remapping times kT to (k + 1) T maps
from Lg to Ly.

@ Generator is smooth in between remappings.

© Remapping is continuous function, while trajectories discontinuous.

v
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Ergodicity of NELD Under Planar Flow Markov Chain Generator

Markov Chain Generator

Steps of the proof:
Markov Chain Generator
(1) e Transition Functions

o Generator
@ Regularity
© Invariant Measure of the Discrete Process
@ Convergence of the NELD
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Ergodicity of NELD Under Planar Flow Markov Chain Generator

Markov Process Generator

NELD in vector form

dX; = b(X,)dt + TdW,, X;€ LI x R3, te[kT,(k+1)T),
Xt: f]\ ) b(Xt): p+/\ q ~| > Z: 9
p -VV(@)-p 0 o

Density transition function

s,y)dx,

ﬁt,s(/y\a /B\t) = P()/Et € B\t}is = S!\) = 5 TZ(@;

t € B(Z? X R?’d)

)

d(e%)s.9)| =9

t=s

s,¥)dx

Ewm&m=/\ @)t

LI xR3d
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Regularity
Regularity

Steps of the proof:
@ Markov Chain Generator
Regularity
Q e Smoothness of the Transition Probability
e Positivity of the Transition Probability
© Invariant Measure of the Discrete Process
@ Convergence of the NELD
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Regularity
Regularity

Regularity proof:
Smoothness of the Transition Probability
* Markov Process Generator in a Fixed Domain
° * Infinitesimal Generator
* Hypoellipticity
* Kolmogorov Equation

@ Positivity of the Transition Probability
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Regularity
Markov Process Generator in a Fixed Domain

Change of variables

{at = eltlg,

b, = eltlAp, @,p) € £ xR3>, (§,p) € LI x R,
t — t

NELD in the fixed domain

dq; = p.dt, LQEZ
dp: = —e AVV (elfq,)dt — Ip.dt + oe AW, " T 77

where [ = A+ 7.

dit == Bt(it)dt "‘ftth, % ¢ Z, it € ,Cg X R3d

C{p— P < _
Be(Xe) = [—e_[t]AVV(e[t]Aq) - rp] 2t =
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Ergodicity of NELD Under Planar Flow Regularity

Markov Process Generator in a Fixed Domain

~ a kA 9 a
q e q
®p 1 L§ x R3 5 L9 x R [ﬁj = [ 0 e[t]A} [f} :

Generator in the fixed domain

Fes(s,9) = BV (F, 0 &) (Xe) = / (Fe 0 &)%)

L4 xR3d

@ \

(t,x

,y)dx

Infinitesimal Generator

d
1 _ _
G:X0+2EIX;, for 1 <i<d,
=

o= (. Vq) = (¢ VV(ela). Vi) ~ (TP, V)
/?" = \/0'725',',,'85[, (Sj,i) — e_[t]A(e_[t]A)T.
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Ergodicity of NELD Under Planar Flow Regularity

Smoothness

[Cass et al.(2021)Cass, Crisan, Dobson, and Ottobre]

Lemma 1

If =8, + G| is hypoelliptic and there exists U;(+), t € [kT,(k +1)T] s.t.

(= 87 + Gi)(-) = 0, then 7(-) € C

Lemma 2

The Markov process generator of X; and )/Et are smooth and we have:

ESYF,(X:) = EY[(F; 0 &:)(X,)] ; ¢7.

/ (F o 00 (X)i(,%]s, ¥)d% = / F(%)(0 0 ©7Y)(2,%]5.9)dx
L4 xR3d LI xR3d
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Regularty
Hypoellipticity

Lemma 3

Ot + Gt, —0r + EI, + ¢ 7 are hypoelliptic.

Lie bracket between two operators % and ¥
(€, 9|=€¢2 — 7.
Since for every point (QxT19, PkT+0) € L£§ x R3
[X, Xo] = Vo2(0g, +7sij)0,;, Vie{l...d},

evaluated at (qo, Po) span £§ x R34
G and EI are hypoelliptic using [Hormander(1987), Theorem 1.1]
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Ergodicity of NELD Under Planar Flow Regularity

Kolmogorov Equation

Lemma 4

[Friedman(1975)] The backward Kolmogorov equation for the NELD is

8s$t,s(Y) + (Esﬁgt,s) (Y) = 0, where Qz(t,i |S’Y)‘t:s = 5(§ _ y)

Lemma 5

The forward Kolmogorov equation for the NELD is

(— 0 + GLY)(t,%|s,y) = 0.

p(t,%) = /L L B O
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Regularity
Regularity

Regularity proof:

@ Smoothness of the Transition Probability
o Positivity of the Transition Probability
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Regularty
Positivity

° §t can be reached at any time with 73t70(?, §t) >0

@ Control problem

dX; S oduy g q d 3d
—— = b(X Y—, Xi= |2 L R
dt (X¢) + dr t [D] € L X )

e C? path p(t) € R3? from £d x R3¢ — L9 x R3d

A0 =@ o) —a
¢ (0) =po ¢ (t) =p:+Aq;

o Accessible points A:(Go, po) = £ x R3

@ [Rey-Bellet(2006), Corollary 6.2]: supp 73t70(y, §t) is equal to the
closure in the uniform topology of A:(qo, o)
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

Invariant Measure of the Discrete Process

Steps of the proof:
© Markov chain Generator
© Regularity
Invariant Measure of the Discrete Process
(s o Uniform Lyapunov Condition

e Uniform Minorization Condition

@ Convergence of the NELD
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

The Invariant Measure of the Discrete Process
Discrete Markov chain
(Qk = GkT, Pk = P) € L§ x R
Discrete generator
(G7)( Qs Pi) = E(F(Qer1, Pis) (Qus Pi))
Lyapunov function
Kn(@p) =1+ [p*",n>1

with the associated weighted L°° norms

h
hi|j = ||
I, =& .
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

The Invariant Measure of the Discrete Process

[Hairer and Mattingly(2008)]
Theorem 6

If Gt satisfies the Lyapunov condition and the minorization condition, then
dmg and C,, A\, > 0 for any n > 1 s.t.

Hg’}f—fHL% < G T F =T, VKO,

f= [ H@p)m(@p)dadp.
L£dxR3d
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Ergodicity of NELD Under Planar Flow Invariant Measure of the Discrete Process

Uniform Lyapunov Condition

Lemma 7

There exists a, € [0,1) and b, > 0 such that

gTICn S anICn + bn,

. R N . 1
G={(p+Aq,Vg)+(-VV(@),Vs)— 7P, Vp) + 500

GKn < —3nKn + bn,  3p, by >0
dIa(Xe) < (=80 + ba)dt + (VKn(Xe), idw> .

E[Kn(Qus1, Prs1)] < € 2T Kn(Qk, Pic) + bn/an.
3338
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Invariant Measure of the Discrete Process
Uniform Minorization Condition

Lemma 8

Fix any pmax > 0, then 3 prob. meas. 9 : £8’ x R3@ R and cst k s.t.

VB € B(£§ x B*), P((Qus1,Pus1) € B | 1Pklly < pmax ) = 50(B).

[Mat(2002), Lemma 2.3]

Lemma 9

C € B(L§ x R39) a fixed compact set. There is a choice of ty, = kT,
k>0, a prob. meas. ¥, with 9(C°) =0 and 9(C) =1 s.t.

Pro(y, B) > k9(B), VB e B(LI xR3), yeC.
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G
Convergence of the NELD

Steps of the proof:
@ Markov chain Generator
@ Regularity
© Invariant Measure of the Discrete Process
Convergence of the NELD

o o Convergence to a limit cycle

e Convergence in Law of Large Numbers
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Convergence of the Continuous Process

Proposition 10

The Markov process (q¢, p:) converges exponentially to the limit cycle my:

ESY[F(Xo)] — F([£])] < Coe ™"

=R (14 Kaly), ¥ =0,

()= [ f@p)m(@pdadp.
L4 xR3d

[Meyn and Tweedie(1993), Mat(2002)]

EOY[f(Xer10)] —?(9)\ < Cre KT lF—F E%Y[KC0(Xo)]

O

~ ~

~ ~ b b
E™Y[Kn(Xo)] < e Kly) + 20 and G — (1+ 27T
n

dn
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Ergodicity of NELD Under Planar Flow Convergence of the NELD

Convergence in Law of Large Numbers

Proposition 11

[Meyn et al.(2009)Meyn, Tweedie, and Glynn]

N
1 ~ ~ o g
NE f(Qkr+0, PrT40) f(a,p)v(a,p)dadp a,s.
k=1

EE—
N—+o0 ngRw

for all the initial conditions (Qo, Po) and any f € L§° .

)

(QkT+0, PkT+0) is a positive Harris recurrent simple chain

° (Qk, Pk) is irreducible w.r.t to the Lebesgue measure

@ Every set in the domain is Harris recurrent [Tierney(1994), Cor 1]
© (Q«, Px) is positive recurrent
@ (Q«, Px) is absolutely continuous w.r.t Lebesgue meas. V(Qx, Px)
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G
Sample for Two Particle Elongational Flow
25

20

Yi7Ys
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