
Randomized lattice rules

Dirk Nuyens
NUMA, KU Leuven, Belgium

Joint work with Frances Kuo (UNSW Sydney)
and Laurence Wilkes (KU Leuven).

MCM
Sorbonne Université
Paris, France
June 2023

1

Lattice rules

Deterministic lattice rules

For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

⇝ For good lattice rule Qn,z converges like n−α ∥f ∥α.
(Optimal. Bakhvalov.)

2

Deterministic lattice rules

For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

⇝ For good lattice rule Qn,z converges like n−α ∥f ∥α.
(Optimal. Bakhvalov.)

2

Randomized lattice rules

Consider a random family of deterministic rules Q∗
n := {Qω

n }ω.

Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)

How?
Random shifting? Random generating vector? Random n?
What is necessary?

3

Randomized lattice rules

Consider a random family of deterministic rules Q∗
n := {Qω

n }ω.

Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)

How?
Random shifting? Random generating vector? Random n?
What is necessary?

3

Randomized lattice rules

Consider a random family of deterministic rules Q∗
n := {Qω

n }ω.

Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)

How?

Random shifting? Random generating vector? Random n?
What is necessary?

3

Randomized lattice rules

Consider a random family of deterministic rules Q∗
n := {Qω

n }ω.

Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)

How?
Random shifting? Random generating vector? Random n?

What is necessary?

3

Randomized lattice rules

Consider a random family of deterministic rules Q∗
n := {Qω

n }ω.

Randomized error or worst-case expected error for f ∈ Hα:

eran(Q∗
n ,Hα) := sup

f ∈Hα
∥f ∥α≤1

Eω[|I (f)− Qω
n (f)|].

⇝ Possible to get n−α−1/2 ∥f ∥α. (Optimal. Bakhvalov.)

How?
Random shifting? Random generating vector? Random n?
What is necessary?

3

Function space

Korobov space of dominating mixed smoothness α > 0:

Hα :=

f ∈ L2([0, 1]d) : ∥f ∥2
α :=

∑
h∈Zd

r2
α(h) |f̂ (h)|2 < ∞

 ,

with
rα(h) := γ−1

supp(h)

∏
j∈supp(h)

|hj |α.

Weighted spaces. . . (Sloan, Woźniakowski. . .)

4

Example of a good lattice rule

Example: n = 21 and z = (1, 13) (Fibonacci lattice rule)

Constructive methods for deterministic error:
fast component-by-component (Nuyens & Cools 2006, . . .)
→ Fixed vector z for a given n.

(Or sequence of n = pm, Cools, Kuo & Nuyens 2006).
5

Deterministic error

For f ∈ Hα, with α > 1/2, and

f (x) =
∑
h∈Zd

f̂ (h) e2πi h·x , f̂ (h) :=
∫
[0,1]d

f (x) e−2πi h·x dx ,

we have

1
n

∑
k∈Zn

f

(
zk mod n

n

)
−
∫
[0,1]d

f (x) dx =
∑

0̸=h∈Zd

h·z≡0 (mod n)

f̂ (h),

by the character sum for Zn, we have for a = z · h ∈ Z,

1
n

∑
k∈Zn

exp(2πi k a/n) = 1{a ≡ 0 (mod n)}.

6

Deterministic error

For f ∈ Hα, with α > 1/2, and

f (x) =
∑
h∈Zd

f̂ (h) e2πi h·x , f̂ (h) :=
∫
[0,1]d

f (x) e−2πi h·x dx ,

we have

1
n

∑
k∈Zn

f

(
zk mod n

n

)
−
∫
[0,1]d

f (x) dx =
∑

0 ̸=h∈Zd

h·z≡0 (mod n)

f̂ (h),

by the character sum for Zn, we have for a = z · h ∈ Z,

1
n

∑
k∈Zn

exp(2πi k a/n) = 1{a ≡ 0 (mod n)}.

6

The good set

Define the “good set” of generating vectors for a prime p as

G (p) :=

z ∈ Zd
p : edet(Qp,z) ≤ inf

λ∈[1/2,α)

4
p

∑
0 ̸=h∈Zd

r−1/λ
α (h)

λ
 .

This set has more than
⌈1

2 p
d
⌉

elements due to

1
pd

∑
z∈Zd

p

[
edet(Qp,z)

]1/λ
≤ 2

p

∑
0̸=h∈Zd

r−1/λ
α (h), ∀λ ∈ [1/2, α),

and Markov’s inequality.

7

The good set

Define the “good set” of generating vectors for a prime p as

G (p) :=

z ∈ Zd
p : edet(Qp,z) ≤ inf

λ∈[1/2,α)

4
p

∑
0 ̸=h∈Zd

r−1/λ
α (h)

λ
 .

This set has more than
⌈1

2 p
d
⌉

elements due to

1
pd

∑
z∈Zd

p

[
edet(Qp,z)

]1/λ
≤ 2

p

∑
0 ̸=h∈Zd

r−1/λ
α (h), ∀λ ∈ [1/2, α),

and Markov’s inequality.

7

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

• “Dual lattice”: h ≡ 0 (mod n):

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

h−10 −5 0 5 10

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

0 1

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

h−10 −5 0 5 10

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

0 1

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

h−10 −5 0 5 10

h−12 −6 0 6 12

8

One-dimensional intuition

• “Lattice points”: xk = k/n, k ∈ Zn, for n = 4, 5, 6:

0 1

0 1

0 1

• “Dual lattice”: h ≡ 0 (mod n):

h−12 −8 −4 0 4 8 12

h−10 −5 0 5 10

h−12 −6 0 6 12

h−12−10−8 −6−5−4 0 4 5 6 8 10 12
8

Zoom out a bit

h−12−10−8 −6−5−4 0 4 5 6 8 10 12

h0 12 30

h0 12 30 120

9

Zoom out a bit

h−12−10−8 −6−5−4 0 4 5 6 8 10 12

h0 12 30

h0 12 30 120

9

Zoom out a bit

h−12−10−8 −6−5−4 0 4 5 6 8 10 12

h0 12 30

h0 12 30 120

9

Prior art

Prior art

• Bakhvalov (1961): lower and upper bounds using lattice rules
for randomized error.

• Kritzer, Kuo, Nuyens, M. Ullrich (2019): randomised algorithm
using lattice rules to achieve the near optimal rate.

Algorithm 1 [KKNU19]

Uniformly sample a prime p ∈ Pn.
Uniformly sample a generating vector z ∈ G (p).
Use the lattice rule with generating vector z and p sample points.

10

Modifying the good set to allow for CBC construction

Define

G̃
(p)
d ,z ′ :=

zd ∈ Zp : θ
(p)
d ,z ′(zd) ≤ inf

λ∈[1/2,α)

4
p

∑
0 ̸=h∈Zd

hd ̸=0

r−1/λ
α (h)


2λ .

This has more than
⌈1

2 p
⌉

elements by a similar method to before.

Depends on the previously fixed values of z ′ = (z1, . . . , zd−1).

11

CBC randomised algorithm

Dick, Goda and Suzuki (2022): component-by-component method.

Algorithm 2 [DGS22 / ...]

Uniformly sample a prime p ∈ Pn.
for j = 1 to d do

Uniformly sample zj ∈ G̃
(p)
d ,z ′ .

end for
Use the lattice rule with generating vector z and p sample points.

12

Existence of a fixed vector method

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n−α−1/2? Yes!

Define the algorithm K ∗
n,z :

Algorithm 3 Fixed vector random algorithm (Kuo, Nuyens, Wilkes)

Uniformly sample p ∈ Pn.
Apply the lattice rule with the predefined z and p sample points.

13

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n−α−1/2? Yes!

Define the algorithm K ∗
n,z :

Algorithm 4 Fixed vector random algorithm (Kuo, Nuyens, Wilkes)

Uniformly sample p ∈ Pn.
Apply the lattice rule with the predefined z and p sample points.

13

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n−α−1/2? Yes!

Define the algorithm K ∗
n,z :

Algorithm 5 Fixed vector random algorithm (Kuo, Nuyens, Wilkes)

Uniformly sample p ∈ Pn.
Apply the lattice rule with the predefined z and p sample points.

13

Existence result

Theorem (Kuo, Nuyens, Wilkes)
There exists a vector z ∈ Zd which achieves the bound

eran(K ∗
n,z) ≤

Cλ

√
ln(n)

nλ+1/2

 ∑
0 ̸=h∈Zd

r−1/λ
α (h)

λ

for all 1
2 ≤ λ < α.

For the proof:
We take z ∈ Zd

N with N :=
∏

p∈Pn
p.

We average over all vectors which are good in the deterministic
sense for all of the primes.

14

Caveats

1. The vectors involved have incredibly large components.

• Use Chinese remainder theorem:

ZN
∼=

⊗
p∈Pn

Zp.

• The generating vector is only ever considered modulo one of the
primes in Pn. We break down the vector z into multiple vectors,

z ∼= (z (p1), . . . , z (pL)).

2. Existence, but what about construction?

15

Caveats

1. The vectors involved have incredibly large components.
• Use Chinese remainder theorem:

ZN
∼=

⊗
p∈Pn

Zp.

• The generating vector is only ever considered modulo one of the
primes in Pn. We break down the vector z into multiple vectors,

z ∼= (z (p1), . . . , z (pL)).

2. Existence, but what about construction?

15

Caveats

1. The vectors involved have incredibly large components.
• Use Chinese remainder theorem:

ZN
∼=

⊗
p∈Pn

Zp.

• The generating vector is only ever considered modulo one of the
primes in Pn. We break down the vector z into multiple vectors,

z ∼= (z (p1), . . . , z (pL)).

2. Existence, but what about construction?

15

Caveats

1. The vectors involved have incredibly large components.
• Use Chinese remainder theorem:

ZN
∼=

⊗
p∈Pn

Zp.

• The generating vector is only ever considered modulo one of the
primes in Pn. We break down the vector z into multiple vectors,

z ∼= (z (p1), . . . , z (pL)).

2. Existence, but what about construction?

15

CBC construction of the vector

What about the usual method?

We follow the standard CBC approach. If zd is a component yet to
be fixed, we can write[

eran
d (K ∗

n,z)
]2

=
[
eran
d−1(K

∗
n,z ′)

]2
+Θ(zd).

If we were to try to minimise Θ(zd) at each dimension, we would
have to search all possibilities that zd could take.

This would be an O(dnn+3) algorithm!

16

What about the usual method?

We follow the standard CBC approach. If zd is a component yet to
be fixed, we can write[

eran
d (K ∗

n,z)
]2

=
[
eran
d−1(K

∗
n,z ′)

]2
+Θ(zd).

If we were to try to minimise Θ(zd) at each dimension, we would
have to search all possibilities that zd could take.

This would be an O(dnn+3) algorithm!

16

A detour. . .

Instead, we define a quantity T (p)(z
(p)
d) which satisfies

Θ(zd) =
1

|Pn|2
∑
p∈Pn

T (p)(z
(p)
d).

The quantity T p(z
(p)
d) = T (p)(z ′, {z(r)d }r<p; z

(p)
d) is cleverly

rewritten so as to not depend on the value of z(q)d for any q > p.

This allows us to fix the residues of the component zd modulo each
of the primes in Pn in increasing order. This uniquely sets the value
of zd ∈ ZN .

17

A detour. . .

Instead, we define a quantity T (p)(z
(p)
d) which satisfies

Θ(zd) =
1

|Pn|2
∑
p∈Pn

T (p)(z
(p)
d).

The quantity T p(z
(p)
d) = T (p)(z ′, {z(r)d }r<p; z

(p)
d) is cleverly

rewritten so as to not depend on the value of z(q)d for any q > p.

This allows us to fix the residues of the component zd modulo each
of the primes in Pn in increasing order. This uniquely sets the value
of zd ∈ ZN .

17

A detour. . .

Instead, we define a quantity T (p)(z
(p)
d) which satisfies

Θ(zd) =
1

|Pn|2
∑
p∈Pn

T (p)(z
(p)
d).

The quantity T p(z
(p)
d) = T (p)(z ′, {z(r)d }r<p; z

(p)
d) is cleverly

rewritten so as to not depend on the value of z(q)d for any q > p.

This allows us to fix the residues of the component zd modulo each
of the primes in Pn in increasing order. This uniquely sets the value
of zd ∈ ZN .

17

Constructing the vector

Algorithm 6 Optimal vector construction at n (Kuo, Nuyens, Wilkes)

for j = 1 to d do
for p ∈ Pn in increasing order do

Compute θ
(p)
j (z

(p)
j) for all z(p)j ∈ Zp.

Compute T
(p)
j (z

(p)
j) for all z(p)j ∈ Zp.

Choose from the ⌈τp⌉ best choices for θ(p)j to minimize T
(p)
j .

end for
end for

• Calculating the randomised error of an arbitrary vector
takes O(dn4 ln(n)−2).

• The complexity of this construction algorithm is only O(dn4)

for product weights.
18

Randomised error vs deterministic error for α = 1, d = 30

We use product weights γ = {j−3}dj=1.

• The deterministic algorithm is Qn,z for z chosen by CBC.

• The randomised algorithm is K ∗
n,z with z chosen via the

described method.

19

Randomised error vs deterministic error for α = 2, d = 30

We use product weights γ = {j−3}dj=1.

• The deterministic algorithm is Qn,z for z chosen by CBC.

• The randomised algorithm is K ∗
n,z with z chosen via the

described method.

20

Conclusions

• Fixed vector algorithm:

Theorem
For α > 1/2 and all λ ∈ [1/2, α):

eran(K ∗
n,z) ≤

(Cτ,λ ln n)
1/2

nλ+1/2 (µd ,α,γ(λ))
λ.

• For α ∈ (0, 1/2]: the usual trick does not work since we want a
fixed vector z .

• Solved by relaxing the sup in the error bound:

Theorem
For α > 0 and all λ ∈ (0, α), r ∈ N and r ≥ 1/(2λ):

erms(K ∗∗
n,z) ≤

1
nλ+(r−1)/(2r)

(
C3 r ln(n)

C1 ln(r + 1)

)1/2

(µd ,α,γ(λ))
λ.

21

Thanks for listening!

22

	Lattice rules
	Prior art
	Existence of a fixed vector method
	CBC construction of the vector

