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» | am not considering time-averages (though you get them as a
consequence - modulo having an invariant measure)

» | don’t necessarily want to approximate the invariant measure, |
want to approximate the law at time ¢, for every t > 0
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dXt = b(X[) at + O'(X[) dW[, XO =X.

> EF(XX) = ut, x)

u(t,x) = (Pf)(x) Markov semigroup

> u(t, x) solves a PDE

owu(t, x) = Lu(t, x) u(0,x) = f(x).

L = b(x)0x + %JZ(X)BXX
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dXi = F(Xp)dt + G(X:)dW;

where

= / F(x, y)u(dy), G(x) = / 9(x. ) (dy)

» Conceptual problems in practice if you don’t have UiT
approximation



» Associated Poisson equation:
(LH(x,y) = (X, y)
> [*is the generator of the fast process
dY: = h(X;, Yi)dt + o(X:, Y:)dB;

namely
LXf = h(x, y)oyf + o®(x, y)dyy f



LXf=¢
» Representation formula
ey = [ Erowat

» smoothness of solution, in both x and y
> quantify how solution f(x, y) varies as x varies - similarly for p*
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» Particle system interacting with fast network

aX{ = —VV(X))dt+ > AS()K(X{ — X|)dt + V2DdB],  i=1..N
J#i
dA}() = —A(E) AN (1) + [1 = AR g0y <y AN (1)

» Main features:

» large number of particles N — oo and fast network evolution e — 0
> the network is sparse, i.e. the interaction is not of mean-field type
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- Numerical methods
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