
Multilevel Monte Carlo learning

Daniel Roth
droth@qontigo.com

Joint work with Thomas Gerstner, Bastian Harrach and Martin
Simon

MCM
Paris, June 30th, 2023.

D. Roth: Multilevel Monte Carlo learning



Motivation

▶ Replace the Monte Carlo estimation with the evaluation of a
deep neural network.

▶ Once the neural network training is done, the evaluation of the
resulting approximating function is computationally highly
efficient.

▶ Training of a suitable neural network is likely to be prohibitive in
terms of computational cost.

Goal:
▶ Study complexity of the training process.
▶ Reduce complexity by a combination of:

▶ Solving the Kolmogorov PDE by means of deep learning (Beck
et al.)

▶ Multilevel Monte Carlo (Giles)

D. Roth: Multilevel Monte Carlo learning



Example practical usage: Replacing complex computations:

▶ new market data

▶ calibrate implied volatility surface

▶ new local volatility function σ(S, t, b) with parameter vector
b = (b1, . . . , bs) ∈ Rs

▶ Compute options’ price through e.g. Monte Carlo

D. Roth: Multilevel Monte Carlo learning



Reformulation:

dS(t) = µ(S, t, a)dt + σ(S, t, b)dW (t)

a = (a1, . . . , am) ∈ Rm : parameter vector

b = (b1, . . . , bs) ∈ Rs : parameter vector

µ(S, t, a) : drift

σ(S, t, b) : volatility

Training set Y ⊂ Rm+s+r × R2
+.

We will be interested in the expected value of

P : y 7→ V (Sa,b,s0,T (T ), v) ,

for fixed

y := (a, b, v , s0,T ) ∈ Y
D. Roth: Multilevel Monte Carlo learning



Goal:

Search neural network N : Y → R minimizing

∥E[P]−N∥Lp(Y ) ,

for 1 ≤ p ≤ ∞.

Training approaches:

▶ Deterministically select inputs and compute outputs
(e.g. via multilevel MC)

▶ Randomly select inputs and compute outputs (Stochastic-batch)

▶ Randomly select inputs and use approximations of outputs. (Beck et
al. 2018).
If Monte Carlo is used for the approximation: Monte Carlo learning

D. Roth: Multilevel Monte Carlo learning



Training approaches I

1: initialize training data (Y ,Z )
2: split (Y ,Z ) into a training set

(Y (1),Z (1)) and validation set
(Y (2),Z (2))

3: initialize neural network
4: for i = 1, . . . ,K do
5: randomly select training data

(y (1)
i , z(1)

i ) from (Y (1),Z (1))
6: calculate loss
7: update weights
8: end for

D. Roth: Multilevel Monte Carlo learning



Training approaches II

Approach 1:

1: initialize training data (Y ,Z )
2: split (Y ,Z ) into a training set

(Y (1),Z (1)) and validation set
(Y (2),Z (2))

3: initialize neural network
4: for i = 1, . . . ,K do
5: randomly select training data

(y (1)
i , z(1)

i ) from (Y (1),Z (1))
6: calculate loss
7: update weights
8: end for

Approach 2:

1: initialize training data (Y ,Z )
2: split (Y ,Z ) into a training set

(Y (1),Z (1)) and validation set
(Y (2),Z (2))

3: initialize neural network
4: for i = 1, . . . ,K do
5: randomly sample inputs y (1)

i

and compute outputs z(1)
i

6: calculate loss
7: update weights
8: end for

D. Roth: Multilevel Monte Carlo learning



Training approaches III

Approach 1:
1: initialize training data (Y , Z)
2: split (Y , Z) into a training set

(Y (1), Z (1)) and validation set

(Y (2), Z (2))

3: initialize neural network
4: for i = 1, . . . , K do
5: randomly select training data

(y(1)i , z(1)i ) from (Y (1), Z (1))

6: calculate loss
7: update weights
8: end for

Approach 2:
1: initialize training data (Y , Z)
2: split (Y , Z) into a training set

(Y (1), Z (1)) and validation set

(Y (2), Z (2))

3: initialize neural network
4: for i = 1, . . . , K do

5: randomly sample inputs y(1)i and

compute outputs z(1)i
6: calculate loss
7: update weights
8: end for

Approach 3:
1: initialize training data (Y , Z)
2: split (Y , Z) into a training set

(Y (1), Z (1)) and validation set

(Y (2), Z (2))

3: initialize neural network
4: for i = 1, . . . , K do

5: randomly sample inputs y(1)i and

compute sample paths z(1)i
6: calculate loss
7: update weights
8: end for

D. Roth: Multilevel Monte Carlo learning



Example: Approach 2 vs. Approach 3

Figure: First line 1000 samples per training step. Second line 10000
samples per step. Fixed neural network architecture and fixed amount of
training steps used for all.

D. Roth: Multilevel Monte Carlo learning



Statistical error:

Under certain assumptions (Beck et al.), there exists a a neural
network N : [0, 1]d → R and a unique continuous function f such that

inf
f∈C([0,1]d ,R)

∫
[0,1]d+H

(
Ph(u)− f (u)

)2
du =

∫
[0,1]d+H

(
Ph(u)− N(u)

)2
du

and it holds for every u ∈ [0, 1]d that

N(u) =
∫

[0,1]H

Ph(u)du = E
[
Ph(u)

]
.

Using approx. outputs usually requires more input-samples per
training step.

D. Roth: Multilevel Monte Carlo learning



Example: observed convergence rates: batch size and training steps

Figure: For levels l = 0, . . . , 4: fixed input evaluation. For comparibility step
rate = trainings steps /5. Samples(level)/train-step:
(3600000, 10000, 3200, 1200, 400)

D. Roth: Multilevel Monte Carlo learning



Complexity studies I

Sequence of functions:

Nν,θi ,P̃,LM
: Y → R,

ν : network structure (layers and neurons)

θi ∈ Rν : weights, i = 1, . . . ,K (training steps)

P̃ : approach to generate training data

LM : loss function

M : number of samples used to evaluate the loss function (batch size)

Goal:

Minimize the mean-squared error (MSE)∥∥∥∥E [(
E[P]−Nν,θK ,P̃,LM

)2
]∥∥∥∥

Lp(Y )

< ϵ2,

D. Roth: Multilevel Monte Carlo learning



Complexity studies II

Error sources:

E[P −Nν,θK ,P̃,LM
]

=E[P − P̃] discretization error

+E[P̃ −N ν,Θ,E[P̃],L] approximation error

+E[Nν,Θ,E[P̃],L −Nν,Θ,P̃,L] statistical error

+E[Nν,Θ,P̃,L −Nν,θK ,P̃,L] optimization error

+E[Nν,θK ,P̃,L −Nν,θK ,P̃,LM
]. generalization error

Computational cost:

CN ≤ c (K · cost training step)

D. Roth: Multilevel Monte Carlo learning



Bring things together

Conjectures:

For E[. . . ] to achieve the following error bounds:
P − P̃ ϵ ϵ ϵ+ h

P̃ −N ν,Θ,E[P̃],L ϵ ϵ ϵ

Nν,Θ,E[P̃],L −Nν,Θ,P̃,L 0 0 0
Nν,Θ,P̃,L −Nν,θK ,P̃,L K−0.5 K−0.5 K−0.5

Nν,θK ,P̃,L −Nν,θK ,P̃,LM
M−1 M−0.5 M−0.5

Approach 1 Approach 2 Approach 3
(det./MLMC) (rnd./MLMC) (rnd./1 path)

requires a complexity CN of K ϵ−2Md K ϵ−2M Kh−1M

D. Roth: Multilevel Monte Carlo learning



Complexity studies IV

Lemma (shortened, considering the conjectures)
Then, there exists a values M and K for which the mean squared error can
be bounded by ϵ2 with a computational complexity CN with bound

CN ≤


ϵ−5.0, for ”Approach 1 (1-dim)” ,

ϵ−4.0−d , for ”Approach 1” ,

ϵ−6.0, for ”Approach 2” ,

ϵ−5.0, for ”Approach 3” .

D. Roth: Multilevel Monte Carlo learning



Multilevel Monte Carlo learning

▶ The multilevel estimator Ŷ is given by the sum of the level
estimators:

Ŷ =
L∑

l=0

Ŷl .

▶ Level estimators:

Ŷl : y 7→

{
Ph0(y) for l = 0,

Phl (y)− Phl−1(y)), for l > 0.

▶ Train a network Nl for each level estimator to obtain the estimator:

N̂ :=
L∑

l=0

Nl ,

D. Roth: Multilevel Monte Carlo learning



Multilevel Monte Carlo learning

Theorem (shortened, only selected assumption)
If amongst others∥∥∥V [

N̂ν,θl
Kl
,Ŷl ,LMl

]∥∥∥
Lp(Y )

≤ c2(h2
l K−1

l + hlM
−1
l ),

Cl≤ c3h−1
l MlKl .

Then, the MSE can be bounded with a computational complexity of

CN̂ ≤ ϵ−4.0,

.
Reminder Singlelevel:

CN ≤


ϵ−5.0, for ”Approach 1 (1-dim)” ,
ϵ−4.0−d , for ”Approach 1” ,
ϵ−6.0, for ”Approach 2” ,
ϵ−5.0, for ”Approach 3” .

D. Roth: Multilevel Monte Carlo learning



Training example:

Y = [0.02, 0.05]× [0.1, 0.2]× [80, 120]× [109, 110]× [0.9, 1.0]

y = (µ, σ,K , s0,T ) ∈ Y .

Parameter Value
neurons (50, 50, 1)
decay rate 0.1
initial learning rate 0.01
step rate 40.000
training steps 150.000

Table: Network structure and training parameters.

D. Roth: Multilevel Monte Carlo learning



Comparing approach 3 and the new multilevel idea

Setting:
▶ repeated 10 times
▶ Nvidia K80 GPU
▶ Max-absolute-error is estimated using 20.000.000 randomly

sampled inputs and the closed solution formula
▶ Batch sizes are calculated through a transformation of the

multilevel sample size estimator

Comparison:

single-level multilevel
mean error time mean error time

0.0273 2.32h 0.0290 4.15h
0.0182 7h 0.0184 5.29h
0.0119 26.66h 0.0103 11.18h

D. Roth: Multilevel Monte Carlo learning



Further works may include:

▶ Algorithm for individual training parameter detection
▶ Individual network structure for each network
▶ Complexity studies including the network structure
▶ Conjecture revision
▶ Differential machine learning

D. Roth: Multilevel Monte Carlo learning



▶ https://github.com/da-roth/NeuronalNetworkTensorflowFramework
▶ T. Gerstner, B. Harrach, D. Roth, M. Simon Multilevel Monte Carlo learning,

arXiv

Thank you for your attention!

D. Roth: Multilevel Monte Carlo learning



Batch sizes per net:

Estimated needed Monte Carlo samples Nl for the Multilevel Monte
Carlo approach for a fixed y and ϵ = 0.01:

level l 0 1 2 3 4 5 6 7
Nl 3.000.000 72695 27756 10550 3691 1308 476 182

Estimated needed batch-size for the training of the specific level nets
for l = 0, . . . , 7:

multilevel id level l 0 1 2 3 4 5 6 7
1 Ml 75.000 1817 690 264 93 33 12 5
2 Ml 300.000 7268 2760 1056 372 132 48 20
3 Ml 1.200.000 29072 11040 4224 1488 528 192 80

D. Roth: Multilevel Monte Carlo learning



D. Roth: Multilevel Monte Carlo learning


	Appendix

