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Outline
• Theme: models for the purpose of... data analysis  

                                                          Monte Carlo algorithm design


• how certain PDMPs emerge


• importance of their event rate: the local barriers


• Recent work based on this “algorithm model” thinking:


• diagnostics: Tour Effectiveness (TE)


• blends of variational and MCMC methods


• tuning non-reversible algorithms


• Open source software (Pigeons)



Motivation (1)

• Concentration on sub-manifolds


• Multimodality

Challenging sampling/integration problems

angle around the ring). We consider these two days because
they have the best (u, v) coverage and span the full observation
window; these results will thus include any effects of intrinsic
source evolution in the recovered parameters. From Figure 8, it
is evident that the difference in 〈p〉 between methods is larger
than the widths of the 〈p〉 histograms in each method. This
means that effects related to the residual instrumental
polarization, giving rise to the dispersion seen in the
histograms, are smaller than artifacts related to the deconvolu-
tion algorithms. In other words, the 〈p〉 images are limited by
the image fidelity due to the sparse (u, v) coverage rather than
by the D-terms.

Even though there are differences among methods in the p
azimuthal distribution, some features are common to all our
image reconstructions. The peak in the polarization brightness
is located near the southwest on 2017 April 5 (at a position
angle of 199° ± 11°, averaged among all methods) and close to
the west on 2017 April 11 (position angle of 244° ± 10°). That
is, the polarization peak appears to rotate counter-clockwise
between the two observing days (see the dotted lines in
Figure 8). On both days, the region of high polarization
brightness is relatively wide, covering a large fraction of the
southern portion of the image (position angles from around
100°–300°).

In the azimuthal distribution of 〈χ〉, all methods produce
very similar values in the part of the image with the highest
polarized brightness (the southwest region, between position
angles of 180° and 270°). The EVPA varies almost linearly,
from around 〈χ〉=− 80° (in the south) up to around 〈χ〉= 30°
(in the east). The EVPAs on 2017 April 11 are slightly higher

(i.e., rotated counter-clockwise) compared to those on 2017
April 5. This difference is clearly seen for eht-imaging,
polsolve, and THEMIS, though the difference is smaller for
DMC and LPCAL. We notice, though, that the differences in
the EVPAs between days could also be affected by small shifts
in the estimates of the image center on each day. Outside of the
region with high polarization, the EVPA distributions for all
methods start to depart from each other. There is a hint of a
constant EVPA 〈χ〉∼ 0° in the northern region (i.e., position
angles around 0°–50°) in polsolve and LPCAL on both
days, but the other methods show larger uncertainties in this
region.
The discrepancies in EVPA among all methods only appear

in the regions with low brightness (i.e., around the northern part
of the ring). Therefore, polarization quantities defined from
intensity-weighted image averages, discussed in the next
sections, will be dominated by the regions with higher
brightness, for which all methods produce similar results.
Image-averaged quantities are somewhat more robust to
differences in the calibration and image reconstruction
algorithms, though they are not immune to systematic errors.

5.3. Image-averaged Quantities

In comparing polarimetric images of M87, we are most
interested in identifying acceptable ranges of three image-
averaged parameters that are used to distinguish between
different accretion models in Paper VIII: the net linear
polarization fraction of the image |m|net, the average polariza-
tion fraction in the resolved image at 20 μas resolution 〈|m|〉,
and the m= 2 coefficient of the azimuthal mode decomposition

Figure 7. Fiducial M87 average images produced by averaging results from our five reconstruction methods (see Figure 6). Method-average images for all four M87
observation days are shown, from left to right. These images show the low-band results; for a comparison between these images and the high-band results, see
Figure 28 in Appendix I. We employ here two visualization schemes (top and bottom rows) to display our four method-average images. The images are all displayed
with a field of view of 120 μas. Top row: total intensity, polarization fraction, and EVPA are plotted in the same manner as in Figure 6. Bottom row: polarization “field
lines” plotted atop an underlying total intensity image. Treating the linear polarization as a vector field, the sweeping lines in the images represent streamlines of this
field and thus trace the EVPA patterns in the image. To emphasize the regions with stronger polarization detections, we have scaled the length and opacity of these
streamlines as the square of the polarized intensity. This visualization is inspired in part by Line Integral Convolution (Cabral & Leedom 1993) representations of
vector fields, and it aims to highlight the newly added polarization information on top of the standard visualization for our previously published Stokes ! results
(Papers I, IV).
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(Black-hole imaging 
posterior approximated 

using our Pigeons 
package)



Motivation (2)

• Typical: assume structure on : 


•  to define convexity,       
     differentiability, etc


• What can we say without 
structural assumptions on ?

𝒳

→

𝒳
x ∈ 𝒳

“Computational Lebesgue integration”?

Z = ∫ exp(ℓ(x))π0(dx)

Z

Bayes example:  is the log-
likelihood w.r.t. prior 

ℓ
π0



Motivation (2)
• Why care about general 

Lebesgue integrals?


• statistical inference beyond 
vectors


• networks, trees, molecules,...
Example of DensiTree 

output, Bouckaert 2010
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Figure 4.11: Multidigraph representation of the MID dataset consisting of
138 countries (vertices) and 508 disputes (edges). Vertices are both
coloured and numbered according to the 58 clusters inferred from the
MAP partition.
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Figure 4: Tuning parameter ↵. Performance of our method (TIPS) using different values of ↵
compared to forward sampling (FS) for estimating the folding pathway of the 1XV6 molecule on its
whole state space.
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Figure 5: An example of a sampled folding pathway for the HIV23 molecule with T = 0.125.
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Bouchard-Côté, A. , Sankararaman, S. , and Jordan, M. I. . Phylogenetic inference via sequential Monte Carlo.
Syst. Biol., 61:579–593, 2012.

Fan, Y. and Shelton, C. . Sampling for approximate inference in continuous time Bayesian networks. In Tenth
International Symposium on Artificial Intelligence and Mathematics, 2008.

Felsenstein, J. . Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17:
368–376, 1981.

Felsenstein, J. . Inferring phylogenies. Sinauer Associates, 2003.
Flamm, C. , Fontana, W. , Hofacker, I. , and Schuster, P. . RNA folding at elementary step resolution. RNA, 6:

325–338, 2000.

9

“Computational Lebesgue integration”?



Motivation (2)
• What can we say about 

computing general 
Lebesgue integrals?


• Too general to have 
algorithms


• But meta-algorithms are 
possible...x ∈ 𝒳

Z = ∫ exp(ℓ(x))π0(dx)

Z

“Computational Lebesgue integration”?



Meta-algorithms
• Input: a slow-mixing “exploration” sampler,  

           


• Output: a new sampler (hopefully fast-mixing?)


• Examples: Parallel Tempering, Simulated Tempering, ...

X1, X2, …



Meta-algorithms

• Reframed question:


• conditions where the meta-
algorithm is fast-mixing...


• ...without making structural 
assumptions on 


• Idea: look at , where 

𝒳

Y1, Y2, …
Yi = ℓ(Xi)

x ∈ 𝒳

Z = ∫ exp(ℓ(x))π0(dx)

Z



Empirical observation

   | 331SYED et al.

It follows from Assumptions (A1)– (A2) and (6) that the behaviour of the communica-
tion scheme only depends on the distribution of the state Xn via the N + 1 univariate distri-
butions of the chain- specific energies V (i) = V

(
X (i)

)
, i  ∈  {0, 1, 2, …, N}. This allows us to 

build a theoretical analysis which makes no structural assumption on the state space   or 
the target π as typically done in the literature: for example, Atchadé et al. (2011) assume a 
product space  = d

0  for large d, and Predescu et al. (2004) assume !(") satisfies a constant 
heat capacity.

Admittedly the ELE assumption (A2) does not hold in practical applications. ELE can 
be approximated by increasing the number of local exploration kernels applied between 
consecutive swap (nexpl). However, one may worry that to achieve a good approximation in 
challenging problems, nexpl would have to be set to a value so large as to defy the practical-
ity of our analysis. Surprisingly, we have observed empirically that this was not the case in 
the multimodal problems we considered. Figure 4 displays results in four models where a 
local exploration kernel alone induces good mixing of the energy chain V (Xn) (hence ELE 
can be approximated) yet the local exploration kernel alone is insufficient to achieve good 
mixing on the full state space, Xn (so that PT is justified and indeed yields efficient explo-
ration of the configuration space). This gap is possible since V(X) is one dimensional and 
potentially unimodal even when X is not. This is the motivation for ELE since assuming the 
independence of V(X) and V (X ′) is weaker than assuming the independence of X and X ′ (as 
hypothesized e.g. in section 5.1 of Atchadé et al. (2011)). Obviously ELE is still expected 
to be a somewhat crude simplifying assumption in very complex problems; for example, 

F I G U R E  4  Four multimodal examples (described in Section 7.1 and Appendix I) where a local exploration 
kernel provides a reasonable approximation of the ELE assumption. For each inference problem, we show trace 
plots for Markov Chain Monte Carlo based on single chain (i.e. the local exploration kernel alone; left facet), and 
for a non- reversible PT algorithm based on the same local exploration kernel (right facet). The top facets each 
show a component of X, and the bottom facets, V(X)
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Yi = ℓ(Xi)

h(Xi)

Example: Ising model with Gibbs sampling

Even though   
mixes poorly...

Xi

...the process  
mixes well

Yi



Empirical observation  model→
• “ELE model”:  are 

assumed iid  
(Effective Local Exploration)


• clearly, many problems fall 
outside of this regime...


• ...but when PT mixes well, 
ELE often seems 
approximately valid

{Yi}
   | 331SYED et al.

It follows from Assumptions (A1)– (A2) and (6) that the behaviour of the communica-
tion scheme only depends on the distribution of the state Xn via the N + 1 univariate distri-
butions of the chain- specific energies V (i) = V

(
X (i)

)
, i  ∈  {0, 1, 2, …, N}. This allows us to 

build a theoretical analysis which makes no structural assumption on the state space   or 
the target π as typically done in the literature: for example, Atchadé et al. (2011) assume a 
product space  = d

0  for large d, and Predescu et al. (2004) assume !(") satisfies a constant 
heat capacity.
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challenging problems, nexpl would have to be set to a value so large as to defy the practical-
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the multimodal problems we considered. Figure 4 displays results in four models where a 
local exploration kernel alone induces good mixing of the energy chain V (Xn) (hence ELE 
can be approximated) yet the local exploration kernel alone is insufficient to achieve good 
mixing on the full state space, Xn (so that PT is justified and indeed yields efficient explo-
ration of the configuration space). This gap is possible since V(X) is one dimensional and 
potentially unimodal even when X is not. This is the motivation for ELE since assuming the 
independence of V(X) and V (X ′) is weaker than assuming the independence of X and X ′ (as 
hypothesized e.g. in section 5.1 of Atchadé et al. (2011)). Obviously ELE is still expected 
to be a somewhat crude simplifying assumption in very complex problems; for example, 

F I G U R E  4  Four multimodal examples (described in Section 7.1 and Appendix I) where a local exploration 
kernel provides a reasonable approximation of the ELE assumption. For each inference problem, we show trace 
plots for Markov Chain Monte Carlo based on single chain (i.e. the local exploration kernel alone; left facet), and 
for a non- reversible PT algorithm based on the same local exploration kernel (right facet). The top facets each 
show a component of X, and the bottom facets, V(X)
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Intuition: exploring a ridge

• Exploration sampler 
can’t get from A to B...


• ...but can explore local 
neighbourhood, hence 
the “altitude distribution”

Unidentifiable model  concentration on sub-manifold⟹

A

B



Background



Path of distributions
π1

π0

difficult

“Easy reference” assumption:

We can sample i.i.d. from  (wlog!*)π0

“interpolations”

...

Example: πβ(x) =
1

Z(β)
exp(βℓ(x)) π0(x)

*using a variational reference: Lefebvre et al 2009

β ∈ [0,1]
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(Non-)Reversible annealing algorithms

Parallel Tempering

(PT)
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Figure 2: Parallel tempering with two reference distributions. Arrows indicate possible state swaps
during communication phases. The left leg starts at the variational reference while the right leg starts
at the prior distribution. Both legs contain distributions lying on the linear paths from a reference
distribution to the target.

The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density

⇡1,m(x) / p(x) ·
mY

i=1

p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
m!1

E[⇤(p,⇡1,m)] = 1.

In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).

3.2 Variational reference PT algorithm

We tune the variational reference by minimizing the forward (inclusive) KL divergence,

KL(⇡1||q�) =
Z

X
log

✓
⇡1(x)

q�(x)

◆
· ⇡1(x) dx.

We choose the forward KL as a proxy to the GCB because minimization can be achieved with a
gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
show in Theorem 3.8 that, in the worst case scenario, the performance when going from standard PT
to our method cannot degrade by more than a factor of two. In practice, we find that variational PT
can substantially improve the restart count.

We assume that the variational reference family is an exponential family as in Eq. (2). Given T

samples from ⇡1 based on a previous tuning round, x1, x2, . . . , xT , we choose the next value of the
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Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
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In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).
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We choose the forward KL as a proxy to the GCB because minimization can be achieved with a
gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
show in Theorem 3.8 that, in the worst case scenario, the performance when going from standard PT
to our method cannot degrade by more than a factor of two. In practice, we find that variational PT
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V1 = 0

V4 = 2

…

“tour”: chunk starting at 
 and ending at β = 0 β = 0

π0

π1

: number of visits at   
      during tour k 
Vk β = 1

Only ST has a regenerative structure (through )π0



ST     vs     PT
Regenerations in chains with atoms

3

Massive parallelization of a single chain Estimating Monte Carlo error is easy

⇒ ⠀⠀⠀— CLT

Run     tours 

⇒   ⠀⠀⠀⠀⠀
= sum of      i.i.d. random variables

A single chain can be split 
into independent tours 

Zero 
communication 

required!

Pass each tour 
to a different 
processor

Problem: elements in generic state-spaces are not reachable ⇒ finding atoms is hard!

Enter simulated tempering (ST) [Lyu92,MP92,GT95]

4

Consider target densities of the form ST augments the state to         , targeting 

“Potential”“Reference”

If we can sample 
iid from    ⠀

Regenerations occur 
when           !

Improves with tuning

Regenerations

…

Partition 
of [0,1]

Sample from  ⠀

conditional

Question: this is a lot of work to get 1 sample from    … can we do better?

+ Easier to parallelize + Easier to tune

Good combo: use 
PT to tune ST



From ELE models to 
performance models



Monte Carlo standard errors 

• Seek guarantees of the form:


• “MC error is small”: ℙ( | ̂πK(h) − π(h) | < δ) ≥ α

Monte Carlo 
estimator based 

on K tours



Monte Carlo standard errors 

• For any ST algorithm, if we have:


• an iid sampler for 


• 


• number of tours K is large enough: 

 ,  where   Tour Effectiveness


• Then MC error is small:  for 


• Same holds for PT, but under the ELE model

π0

𝔼V2 < ∞

K ≥
4
TE ( zα

δ )
2

TE =
(𝔼V )2

𝔼V2
←

ℙ( | ̂πK(h) − π(h) | < δ) ≥ α |h | ≤ 1

convenient bound for regenerative index processes

Proof ingredients: Geyer&Thomson 1995 + Kong 1992



Tour Effectiveness (TE)

• “Regenerative cousin” of importance sampling’s ESS


• Estimation:


• from observed tours  use this for standard errors


• closed form under ELE:  for algorithm design 

←

←

TE =
(𝔼V )2

𝔼V2

TENR =
1

1 + 2∑i
ri

1 − ri

TER =
4
11

1
2N − 1 + 2∑i

ri

1 − ri

Enter simulated tempering (ST) [Lyu92,MP92,GT95]

4

Consider target densities of the form ST augments the state to         , targeting 

“Potential”“Reference”

If we can sample 
iid from    ⠀

Regenerations occur 
when           !

Improves with tuning

Regenerations

…

Partition 
of [0,1]

Sample from  ⠀

conditional

Question: this is a lot of work to get 1 sample from    … can we do better?

Swap rejection rate 
between chain i, i+1 Biron et al. 2023+



Non-asymptotic comparison of  
(R/NR)(PT/ST)

Practical implications of improved tour effectiveness 

7

The increase in TE 
shrinks confidence 
intervals by a 
factor of 2.5.

Under ELE:     for all N > 2TENR > TER



From performance 
models to algorithm 

tuning



Tuning nobs
• Annealing schedule 


• 


• number of grid points 


• “Pseudo-prior”  [for ST only]

0 = β1 < β2 < … < βN = 1

N

p(β)



Round-based tuning

...

round

swaps

in round

1

21

2

22

3

23

4

24

Adapt! Adapt! Adapt!



Turning a schedule
• Recall our formula for the Tour Effectiveness 

 
 

• Goal: optimize   over  for next round


• Can we “predict” the rejection rates  for a 
putative schedule?

TENR {βi}

r(βi, βi+1)

TENR({βi}) = [1 + 2∑
i

(r(βi, βi+1)
−1 − 1)−1]−1



Taylor expansions

• For PT:     


• For ST*:     

λPT(β) =
1
2

𝔼 |ℓ(Xβ) − ℓ(X′￼β) | , k = 3

λST(β) =
1
2

𝔼 |ℓ(Xβ)−𝔼[ℓ(Xβ)] | , k = 2

of rejection rates

r(β, β′￼) = ∫
β′￼

β
λ(t)dt + O( |β′￼− β |k )

Xβ, X′￼β ∼ πβ

“Local communication barrier”

*when p(β) ∝ 1

Syed et al., 2021

Biron et al., 2023+



Estimating the communication barrier

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
beta

La
m
bd
a

1. Start with initial 
schedule , run 
PT for n iteration  

2. compute the 
following cumulative 
swap rejection 
statistics:

{βi}

βi+1 − βi

̂ri

Equivalently: estimate cumulative barrier Λ(β) = ∫
β

0
λ(t)dt

Syed et al., 2021



Estimating the communication barrier
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3. Fit a monotone spline interpolation
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Figure 2: Monotonic interpolation of the estimated tempering barrier (Eq. (24)) for an array
of six models. Vertical lines (yellow) show the grid obtained after running Algorithm 4,
with horizontal lines (blue) signaling that the inverse temperatures approximately satisfy
the condition in Eq. (21).

using a monotonic interpolation of the points

8i 2 {0, . . . , N} : b⇤(�i) :=
iX

j=1

ri. (24)

Finally, the interpolated function b⇤ can be used together with an o↵-the-shelf
root finding subroutine to obtain the new grid points using Eq. (21).

Fig. 2 shows the result of applying the grid adaptation strategy to a
selection of six models (see definitions in Appendix B.1). Note that the
optimal points are far from uniformly distributed. They also do not follow a
common pattern, like a logarithmic spacing concentrated at � = 0. Indeed,
the optimal grid can concentrate in arbitrary parts of the unit interval,
highlighting the necessity of the adaptation scheme described in this section.

5.3 Convergence detection

We propose three indicators with respective thresholds that, when jointly
satisfied, signal that the loop in Algorithm 4 can be safely terminated earlier.
The first one tracks agreement with the equi-rejection criterion, by measuring
the standard deviation of the estimated symmetrized rejection probabilities

26

Tuning the annealing schedule
Close-form solution for  is given bymax TE({β})

β*k = Λ−1( k Λ(1)
N )

β*k



PDMP interpretation
• Let  (and  for simplicity)


• From non-reversibility (of either ST or PT) 
emerges a persistence of motion or inertia....


• ....as long as a proposed swap is not 
rejected


• Swap rejection rate ...


• ....but there are more and more chains to 
traverse  law of rare events  PDMP

N → ∞ βk = k/N

ri → 0

→ →

Syed et al., 2021



PDMP interpretation

• As soon as there is a rejected 
swap, direction changes


• 1-dimensional “bounce”



PDMP interpretation
• Under ELE, convergence to the “telegrapher PDMP”


• velocity 


• transition: velocity flip


• rate: local communication barrier 

∈ {−1, + 1}

λ(β)

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]
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Local barrier: examples
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Communication barrier and TE

TENR →
1

1 + 2Λ(1)

Under the ELE model

TER → 0

58 Syed et al.

Fig. 18: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate (2 + 2⇤̂)�1.

I.4.3 Discrete-multimodal problem
Consider a discrete state space X = {0, . . . , 2k}, and let 1Even : ⌦ ! {0, 1} denote the
indicator function for even numbers. Define ⇡(x) / a1Even(x) for a > 1 and ⇡0(x) / 1
with V (x) = �1Even(x) log a. The distribution ⇡ has k+1 modes located where x is even
with low probability “barriers” located at x odd. The parameter a controls the relative
mass put on the modes. Therefore we have

⇡(�)(x) =
a�1Even(x)

Z(�)
, (171)

where Z(�) = k + (k + 1)a� . A simple computation using (22) shows that the local
communication barrier is,

�(�) =
k(k + 1)a� log a

(k + (k + 1)a�)2
���!
k!1

a� log a

(1 + a�)2
. (172)

By integrating we obtain the global communication barrier between ⇡ and ⇡0,

⇤ =
k(k + 1)(a� 1)

(2k + 1)(k + (k + 1)a)
���!
k!1

a� 1

2(a+ 1)
. (173)

I.4.4 Mixture model
We consider a Bayesian mixture model with two mixture components. The likelihood
for each component is a normal distribution with a non-conjugate Uniform(0, 100) prior
on the standard deviation and a normal prior on the means (standard deviation of
100). We placed a uniform prior on the mixture proportion. We used simulated data
generated from the model. While the mixture membership indicator latent random vari-
ables can be marginalized in this model, we sample them to make the posterior inference

as N → ∞



Can we “break” the barrier?
58 Syed et al.

Fig. 18: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate (2 + 2⇤̂)�1.
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Consider a discrete state space X = {0, . . . , 2k}, and let 1Even : ⌦ ! {0, 1} denote the
indicator function for even numbers. Define ⇡(x) / a1Even(x) for a > 1 and ⇡0(x) / 1
with V (x) = �1Even(x) log a. The distribution ⇡ has k+1 modes located where x is even
with low probability “barriers” located at x odd. The parameter a controls the relative
mass put on the modes. Therefore we have
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a�1Even(x)
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, (171)

where Z(�) = k + (k + 1)a� . A simple computation using (22) shows that the local
communication barrier is,

�(�) =
k(k + 1)a� log a

(k + (k + 1)a�)2
���!
k!1

a� log a

(1 + a�)2
. (172)

By integrating we obtain the global communication barrier between ⇡ and ⇡0,

⇤ =
k(k + 1)(a� 1)

(2k + 1)(k + (k + 1)a)
���!
k!1

a� 1

2(a+ 1)
. (173)

I.4.4 Mixture model
We consider a Bayesian mixture model with two mixture components. The likelihood
for each component is a normal distribution with a non-conjugate Uniform(0, 100) prior
on the standard deviation and a normal prior on the means (standard deviation of
100). We placed a uniform prior on the mixture proportion. We used simulated data
generated from the model. While the mixture membership indicator latent random vari-
ables can be marginalized in this model, we sample them to make the posterior inference



Breaking the communication 
barrier

• We have explored several strategies to break the barrier:


• Smarter interpolation / geodesics (Syed et al, ICML 2021) 
 
 
 

• Making the end point closer  
(Surjanovic et al., NeurIPS 2022)



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

π1

π0

q

π1

Bringing the end-point of the path closer to the target

How to find  close to ?q π1

Variational-MCMC blends



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

π1

π0

qϕ*

{qϕ : ϕ ∈ Φ}
Variational family

Example: Gaussian family

Generally: Parametric 
family such that 
we can: 

- sample i.i.d.

- eval density

A family of easy distributions

Paquet et al., 2009



...

round

swaps

in round

3

23 = 8

4

24

...

Match

moments

+

̂μ
̂σ

qϕ ← q( ̂μ, ̂σ)

Update

reference

Reference samples

X1, X2, …, X8

Variational inference via statistical estimation

Surjanovic et al, 2022



Stabilized Variational PT
• Performance of previous variational PT methods can collapse


• Developed a “stabilized” variational algorithm


• non-deterioration guarantee under ELE
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Figure 2: Parallel tempering with two reference distributions. Arrows indicate possible state swaps
during communication phases. The left leg starts at the variational reference while the right leg starts
at the prior distribution. Both legs contain distributions lying on the linear paths from a reference
distribution to the target.

The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density

⇡1,m(x) / p(x) ·
mY

i=1

p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
m!1

E[⇤(p, ⇡1,m)] = 1.

In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).

3.2 Variational reference PT algorithm

We tune the variational reference by minimizing the forward (inclusive) KL divergence,

KL(⇡1||q�) =

Z

X
log

✓
⇡1(x)

q�(x)

◆
· ⇡1(x) dx.

We choose the forward KL as a proxy to the GCB because minimization can be achieved with a
gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
show in Theorem 3.8 that, in the worst case scenario, the performance when going from standard PT
to our method cannot degrade by more than a factor of two. In practice, we find that variational PT
can substantially improve the restart count.

We assume that the variational reference family is an exponential family as in Eq. (2). Given T

samples from ⇡1 based on a previous tuning round, x1, x2, . . . , xT , we choose the next value of the
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Figure 2: Parallel tempering with two reference distributions. Arrows indicate possible state swaps
during communication phases. The left leg starts at the variational reference while the right leg starts
at the prior distribution. Both legs contain distributions lying on the linear paths from a reference
distribution to the target.

The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.
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Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,
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for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.
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holds. Then,
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.
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posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
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conditions such as an asymptotic normality Bernstein-von Mises result [19].
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holds. Then,
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and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density
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p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
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for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density
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p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
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for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density

⇡1,m(x) / p(x) ·
mY
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p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
m!1

E[⇤(p, ⇡1,m)] = 1.

In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).

3.2 Variational reference PT algorithm
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We choose the forward KL as a proxy to the GCB because minimization can be achieved with a
gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
show in Theorem 3.8 that, in the worst case scenario, the performance when going from standard PT
to our method cannot degrade by more than a factor of two. In practice, we find that variational PT
can substantially improve the restart count.

We assume that the variational reference family is an exponential family as in Eq. (2). Given T
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density

⇡1,m(x) / p(x) ·
mY

i=1

p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
m!1

E[⇤(p, ⇡1,m)] = 1.

In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).
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gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.

In our variational PT algorithm, we introduce two reference distributions: the original (fixed) reference
and a variational reference, as illustrated in Fig. 2. This approach is robust as the samples obtained
from the fixed reference prevent the variational reference from becoming trapped in a region of the
target distribution. We create an annealing path that starts at q�, proceeds along a linear annealing
path to ⇡1, and then moves on a new linear path from ⇡1 to ⇡0, connecting all three distributions. We
show in Theorem 3.8 that, in the worst case scenario, the performance when going from standard PT
to our method cannot degrade by more than a factor of two. In practice, we find that variational PT
can substantially improve the restart count.
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The goal of this work is to find a reference q� that provides a low GCB, and hence results in an
efficient PT algorithm. Intuitively, for q� that are close to the target ⇡1, the GCB will be small and
the restart rate will be high. The GCB is a divergence and when q� is exactly equal to the target ⇡1,
the GCB is equal to zero.

The following result illustrates that in the Bayesian framework where p and ⇡1,m are the prior and
posterior with m observations, respectively, the GCB between p and ⇡1,m increases to infinity in the
data limit. Suppose that the data Y1, Y2, . . . , Ym are i.i.d. with distribution Fx0 and density p(y|x0)
for some x0 2 X . Then, the posterior distribution is the random probability measure with density

⇡1,m(x) / p(x) ·
mY

i=1

p(Yi|x).

Our result relies on Assumption A.2, which stipulates standard technical asymptotic Bayesian
conditions such as an asymptotic normality Bernstein-von Mises result [19].
Proposition 3.1 (GCB in the data limit with a fixed reference). Suppose Assumption A.2 in Appendix A
holds. Then,

lim
m!1

E[⇤(p, ⇡1,m)] = 1.

In contrast, we show that with an appropriate choice of reference distribution, the expectation of the
GCB goes to zero in the data limit (Proposition 3.2).
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We choose the forward KL as a proxy to the GCB because minimization can be achieved with a
gradient-free moment-matching procedure. We show that the forward (inclusive) KL is a valid proxy
for the GCB in Theorem 3.4.
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Figure 1: Left box: visualization of the three main PT algorithms considered in this work. Nodes represent
distributions interpolating between tractable reference distributions (bottom, either fixed ⇡0 or variational q�),
and an intractable distribution (top, ⇡1, typically a Bayesian posterior). Edges encode the structure of the possible
swaps performed by the various PT algorithms. Right box: examples of a path of marginal distributions obtained
on a Bayesian ODE parameter estimation problem with more than one latent variable for an mRNA transfection
dataset [5, page 8]. The two modes are non-trivial to switch as they require changing other parameters (not
shown) simultaneously. In this example, the marginal of the prior places a small amount of mass on the second
mode whereas the marginal of the variational reference places significant mass on both modes. Because the
variational reference covers both modes, the length of the annealing path from the reference to the target is
shorter and it is easier to obtain samples from the target distribution using parallel tempering.

In the setting of Bayesian posterior inference—a key application of PT, and the focus of this work—
the target ⇡1 is the posterior distribution, and the reference distribution ⇡0 is typically set to the prior.
From the perspective of PT communication efficiency, this is a poor choice in general; the prior
is often quite different from the posterior, resulting in a high GCB. As an extreme (but common)
example, we show in this work that when the posterior distribution concentrates in the large-data
limit, the restart rate with a fixed reference tends to zero and PT becomes computationally infeasible
(Proposition 3.1). On the other hand, the posterior often exhibits regularities—asymptotic normality
in certain parameters, for example—that motivate the need for a choice of PT reference that can
automatically adapt to the target to obtain computational gains.

In this work, we develop and analyze a novel PT algorithm that automatically adapts a variational
reference distribution within a parametric family, Q = {q� : � 2 �}. This adaptive reference family
addresses the shortcomings of using the prior as a PT reference: we show that in the large-data
limit, the restart rate with an appropriate variational reference improves arbitrarily (Proposition 3.2).
We find that even when one is not in the large data setting, our method can provide large empirical
gains compared to fixed-reference PT in a wide range of realistic Bayesian inference scenarios. The
method is based on two major methodological contributions. First, we adapt the parameter � to
minimize the forward (inclusive) KL divergence KL(⇡1kq�) instead of directly taking gradients with
respect to the GCB itself. This approach is particularly advantageous when Q is an exponential
family: Theorem 3.5 shows that the forward KL is a good surrogate of the GCB, and minimizing the
forward KL amounts to matching moments, which involves no extra tuning effort from the user. We
perform moment matching in a simple iterative fashion, in rounds of increasingly many PT draws;
Theorem 3.4 identifies conditions that guarantee that the variational parameter estimate converges
to the optimum. Second, we combine two references—one fixed, one variational—by “gluing” two
PT algorithms together (each based on one of the references, see Fig. 1). We demonstrate that
this “stabilized” method is necessary for obtaining a reliable PT algorithm: adaptation with just the
variational reference alone can lead to “forgetting” the structure of the posterior distribution (e.g.,
multi-modality, as shown in Fig. 2). Although this requires more computational effort, we show that
under idealized conditions the restart rate of our adaptive method is no lower than half the restart rate
of standard, fixed reference PT (Theorem 3.6) after accounting for the doubled computation time.
In practice, it is often much better. Finally, the paper presents an extensive empirical study of the
performance of our method in a variety of real-world Bayesian models, including spatial models
(sparse random field Poisson regression) and functional data analysis (Bayesian estimation of ODE
parameters), among others. We find that our method can substantially increase the performance of
PT.

2



Open software implementation



Pigeons.jl

• In Quebec: “Pigeons.” = “Let us draw at random.” 


• What Pigeons.jl does:


• run Variational PT on your laptop


• ... or on a cluster with 1000s of machines (MPI)

https://tinyurl.com/getpigeons
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Alexandre
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Tiede

Miguel 

Biron



How to use Pigeons.jl
julia> using Pkg; Pkg.add(“Pigeons”); using Pigeons # install

...

julia> approximation = pigeons(target = toy_mvn_target(1000))

• Support many ways to specify the target distribution


• Plain Julia function


• Bayesian modelling languages (Turing.jl, Stan, etc)


• “Black box” MCMC explorers in any language!  
(R, python, C, scala, ..)



julia> approximation = pigeons(target = toy_mvn_target(100), n_chains = 20)

───────────────────────────────────────────────────────────────────────────────────────

  #scans     rd-trip   restarts      Λ        time(s)    log(Z)     min(α)     mean(α) 

────────── ────────── ────────── ────────── ────────── ────────── ────────── ──────────

        2          0          0       9.77   8.38e-05       -118   4.99e-06      0.486 

        4          0          0       10.4   0.000233       -114     0.0152      0.452 

        8          0          0       7.21   0.000369       -113      0.307      0.621 

       16          0          0       8.16    0.00193       -115      0.137       0.57 

       32          0          0       8.58   0.000831       -115      0.162      0.549 

       64          0          0       8.26    0.00127       -115      0.383      0.565 

      128          0          0        8.8    0.00218       -115      0.403      0.537 

      256          0          4       8.61     0.0043       -115      0.496      0.547 

      512          7         11       8.66     0.0113       -115       0.47      0.544 

 1.02e+03         19         31       8.62     0.0155       -115      0.507      0.547 

───────────────────────────────────────────────────────────────────────────────────────

PT(checkpoint = false, ...)

Estimation of

normalization


constants

Swap probabilityCommunication

barrier

Round structure

Toy example



Distributed PT
1M dimensional target x 1k chain = 1B dim MCMC 


1000 MPI processes

julia> job = pigeons(target = toy_mvn_target(1_000_000), n_chains = 1000, 

       on = MPI(n_mpi_processes = 1000))



julia> job = pigeons(target = toy_mvn_target(1_000_000), n_chains = 1000, 

       on = MPI(n_mpi_processes = 1000))


Result{PT}(“/st-alexbou-1/abc/Pigeons/results/all/2023-05-19-20-05-36-RGkcWuaI")


julia> watch(job)

────────────────────────────────────────────────────────────────────────────

  #scans       Λ        time(s)    allc(B)    log(Z)     min(α)     mean(α) 

────────── ────────── ────────── ────────── ────────── ────────── ──────────

        2        642       1.22   7.98e+03  -1.15e+06   8.89e-22      0.357 

        4        642       1.21   1.39e+04  -1.15e+06   3.74e-25      0.357 

        8        706      0.104   2.81e+04  -1.15e+06   3.26e-10      0.294 

       16        724      0.208   4.92e+04  -1.15e+06   8.02e-06      0.276 

       32        742      0.334   9.52e+04  -1.15e+06    0.00411      0.258 

       64        745      0.553    1.8e+05  -1.15e+06     0.0554      0.254 

      128        747       1.16    3.6e+05  -1.15e+06     0.0803      0.252 

      256        750       2.25   6.98e+05  -1.15e+06      0.131       0.25 

      512        749        4.6   1.38e+06  -1.15e+06      0.162       0.25 

 1.02e+03        749       9.29   2.73e+06  -1.15e+06      0.189       0.25 

────────────────────────────────────────────────────────────────────────────

Distributed PT
1M dimensional target x 1k chain = 1B dim MCMC 


1000 MPI processes



The magic of distributed PT
• Exchange ’s, not states!  

 visualize each MPI process as an index process 
 
 
 
 
 
 
 

 O(1) network transmission/swap 


• O(d log N ) communication between rounds.. 
.. but there are logarithmically many rounds

β
⟹

⟹

2 Syed et al.

Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡0 is the prior, ⇡ the posterior. The sequence of swap moves
forms N + 1 index process trajectories (paths formed by the red and green edges). We show
one such path in bold. The reversible and non-reversible PT clearly exhibit di↵erent scaling
behaviour which we formalize in Section 6.

1.1. Parallel Tempering

One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day a very
popular MCMC method to sample from complex multimodal target distributions arising
in physics, chemistry, biology, statistics, and machine learning; see, e.g., Issaoun et al.
(2021); Ballnus et al. (2017); Chandra et al. (2019); Cho et al. (2010); Desjardins et al.
(2014); Diaz et al. (2020); Dorri et al. (2020); Kamberaj (2020); Müller and Bouckaert
(2020).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, from which we can often obtain independent samples.

More precisely, PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution
is given by ⇡(x) =

Q
N

i=0
⇡(�i)(xi) (Geyer, 1991). At each iteration, PT proceeds by

applying in parallel N + 1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these
model-specific kernels the local exploration kernels. The chains closer to the reference
chain (i.e. those with annealing parameter �i close to zero) can typically traverse regions



Thank you!
Links to papers

https://tinyurl.com/nrpt-paperSyed et al. JRSSB 2021
https://tinyurl.com/variational-paperSurjanovic et al. NeurIPS 2022

https://tinyurl.com/getpigeons
Link to software

BC et al., Julia Conf 2023


