Higher-order stochastic integration through cubic
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how to get a O(N~5) error when you compute your favourite integral
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N
This talk

@ Generalities on random algorithms for quadrature and best possible
rates;

@ Two new classes of estimators with optimal rate.
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Generalities on random quadrature

Section 1

Generalities on random quadrature
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Generalities on random quadrature

Formal definition of the considered problem

@ We wish to obtain the best possible approximation of

I(f):= /[0 " f(u)du

based on n evaluations of function f : [0,1]* — R.
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Generalities on random quadrature

Formal definition of the considered problem

@ We wish to obtain the best possible approximation of

I(f):= /[0 " f(u)du

based on n evaluations of function f : [0,1]* — R.

@ For a random algorithm, our optimality criterion is simply the RMSE
(root mean square error), i.e. the root square of:

E {(i(f) - I(f))Z]
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Generalities on random quadrature

Formal definition of the considered problem

@ We wish to obtain the best possible approximation of

I(f):= /[0 " f(u)du

based on n evaluations of function f : [0,1]* — R.

@ For a random algorithm, our optimality criterion is simply the RMSE
(root mean square error), i.e. the root square of:

E {(i(f) - I(f))Z]

@ We focus on unbiased estimation, E {f(f)} = Z(f). Then the RMSE
equals the square root of the variance.
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alities on random qua

Advantages of unbiased algorithms

It is possible to generate k independent unbiased estimates

@ in parallel;
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ies on random quadrature

Advantages of unbiased algorithms

It is possible to generate k independent unbiased estimates

@ in parallel;

@ to use them assess the numerical error, through the empirical variance

&2
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Generalities on random quadrature

Advantages of unbiased algorithms

It is possible to generate k independent unbiased estimates

@ in parallel;

@ to use them assess the numerical error, through the empirical variance

&2

e and compute their average (the variance of which is ~ 52 /k)
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Generalities on random quadrature

Advantages of unbiased algorithms

It is possible to generate k independent unbiased estimates

@ in parallel;

@ to use them assess the numerical error, through the empirical variance

&2

e and compute their average (the variance of which is ~ 52 /k)

Moreover, random estimates tends to have better error rates than
deterministic ones, see below.
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Generalities on random quadrature

Most common unbiased algorithm: Monte Carlo

1(f) = —Z f(U), Ui ~Uu(o,1}°)

o Unbiased, with RMSE O(n~1/2).
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Generalities on random quadrature

Most common unbiased algorithm: Monte Carlo

1(f) = —Z f(U), Ui ~Uu(o,1}°)

o Unbiased, with RMSE O(n~1/2).

e Minimal assumption on f: [ 2 < oo.
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Generalities on random quadrature

Most common unbiased algorithm: Monte Carlo

1(f) = —Z f(U), Ui ~Uu(o,1}°)

o Unbiased, with RMSE O(n~1/2).
e Minimal assumption on f: [ 2 < oo.

@ We can construct estimators with better rates if we focus on a smaller
class of functions.
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Generalities on random quadrature

Most common unbiased algorithm: Monte Carlo

1(f) = —Z f(U), Ui ~Uu(o,1}°)

o Unbiased, with RMSE O(n~1/2).
e Minimal assumption on f: [ 2 < oo.

@ We can construct estimators with better rates if we focus on a smaller
class of functions.

Note: | will not talk about (randomised) quasi-Monte Carlo today.
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Generalities on random quadrature

Optimality results

Assuming f € C'([0, 1]°), the best RMSE one may achieve for a random
algorithm is (Bakhvalov, 1959)

O(n—1/2—r/5)
while the best (absolute) error for a deterministic algorithm is

o).
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Generalities on random quadrature

Optimality results

Assuming f € C'([0, 1]°), the best RMSE one may achieve for a random
algorithm is (Bakhvalov, 1959)

O(n—1/2—r/5)
while the best (absolute) error for a deterministic algorithm is

o).

Statement above is slightly sloppy; for something more formal see
e.g. Novak (2015).
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Generalities on random quadrature

Connexion with function approximation

Optimal function approximation: based on n evaluations of f, provide
approximation f, such that ||f — f]|c0 = O(n_r/s)_
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Generalities on random quadrature

Connexion with function approximation

Optimal function approximation: based on n evaluations of f, provide
approximation f, such that ||f — f]|c0 = O(n_r/s)_

The following estimate (based on 2n evaluations of f)

() =T(h) + ig{f— YUY, U~ U ([0.1).

is then unbiased and with optimal rate, since:

Var [2(F)] = 5 D" Var[(F — f}(U)]
i=1

_ O(n—l—2r/5)
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ies on random quadrature

Stratification

Our approach relies on splitting [0, 1]° into k® “sub-cubes”, and performing
| evaluations of f inside each: n =/ x k%, so k = O(n'/%).

10 = -
o .
3 . .
08 .
o
oo | = o
o .
06
g R o .
of® | A
04
o
(14 .
3
02
-
. o |
: ..
e |, a

Let €4 denote the set of centres of the sub-cubes, and By(c) the sub-cube
with center ¢ € €.
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Generalities on random quadrature

Haber (1966)'s estimator (optimal for r = 1)

A 1 1 17°
I(f) = ; Cgk f(C + UC), UC ~ u( |:—2k, 2[(} )

note that ¢ + U. € Bk(c), the sub-cube with centre c.
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Generalities on random quadrature

Haber (1966)'s estimator (optimal for r = 1)

A 1 1 17°
I(f) = ; Cgk f(C + UC), UC ~ u( |:—2k, 2[(} )

note that ¢ + U. € Bk(c), the sub-cube with centre c.
For f € C}([0,1]°), each term f(c + U,):

@ has expectation nka(C) f(u)du;
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Generalities on random quadrature

Haber (1966)'s estimator (optimal for r = 1)

A 1 1 17°
I(f) = ; Cgk f(C + UC), UC ~ U( |:—2k, 2[(} )

note that ¢ + U. € Bk(c), the sub-cube with centre c.
For f € C}([0,1]°), each term f(c + U,):
@ has expectation n [g . f(u)du;

—2/s

@ has variance n=</*, since for u, v € By(c),

() = F(] < I ooy
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Generalities on random quadrature

Haber (1966)'s estimator (optimal for r = 1)

A 1 1 17°
I(f) = ; Cgk f(C + UC), UC ~ U( |:—2k, 2[(} )

note that ¢ + U. € Bk(c), the sub-cube with centre c.
For f € C}([0,1]°), each term f(c + U,):
@ has expectation n [g . f(u)du;

@ has variance n—2/$

, since for u, v € By(c),
1
[F(u) = F(V)] < [V Flloo .

= the RMSE of Z(f) is O(n~'/2=1/%) provided f € C.
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ies on random quadrature

In terms of function approximation

Alternatively, we could approximate f by a piecewise constant function:

fa(x) = D £(c) x 1p,(¢)(x)

ceCy

and we would recover a very similar estimator.
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Generalities on random quadrature

In terms of function approximation

Alternatively, we could approximate f by a piecewise constant function:

Zf ><]-Bkc)( )

ceCy
and we would recover a very similar estimator.

Only difference: we use stratified random variables (rather than IID
variables). Variance reduction, but does not change the rate.
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Generalities on random quadrature

Haber (1967)’s estimator (optimal for r = 2)

i'(f) = % Z 8c(Ue), Ue ~ U( [_211(7 21/(:| S)

cely

where
f(c+u)+ f(c—u)

2

gc(u) =

so n = 2k° evaluations; local antithetic effects.
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Generalities on random quadrature

Haber (1967)’s estimator (optimal for r = 2)

)= ¥ e, U~ Ul 5]

cely

where
f(c+u)+ f(c—u)
2

gc(u) =

so n = 2k° evaluations; local antithetic effects.
Each term g.(U.):

@ has expectation n [g) f(u)du

o has variance n=*/5 since g.(u) = f(c) + O(||u|]?)
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Generalities on random quadrature

Haber (1967)’s estimator (optimal for r = 2)

)= ¥ e, U~ Ul 5]

cely

where
f(c+u)+ f(c—u)
2

8c(u) =
so n = 2k° evaluations; local antithetic effects.
Each term g.(U.):
@ has expectation n [g) f(u)du

o has variance n=*/5 since g.(u) = f(c) + O(||u|]?)
= the RMSE of Z(f) is O(n~'/2=2/%) provided f € C2.
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alities on random qua

We generalise Haber's estimators

Two approaches:
© Higher-order cancellations by combining 3 or more terms

@ Control variates
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Vanishing functions: combining 3 or more terms

Section 2

Vanishing functions: combining 3 or more terms
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Vanishing functions: combining 3 or more terms

Cancellation: combining 4 terms

for f € C*([0,1]%), since

flctu)+flc—u)
5 =

f(c)+ 1uTH(c)u +0(k™)

gc(u) == 5

one has
ge(Au) — Ngo(u) = (1 = X2)f(c) + O(k™%)
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Vanishing functions: combining 3 or more terms

Cancellation: combining 4 terms

for f € C*([0,1]%), since

ge() = EFIIEZD i) 4 LT h(eyu + ok

one has
ge(Au) — Ngo(u) = (1 = X2)f(c) + O(k™%)

Problem: if |\| # 1, Y. f(c + AU.) does not have the right expectation,
since the support of ¢ + AU is now a hyper-cube with centre ¢ and side
length |\|/k.
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Vanishing functions: combining 3 or more terms

Vanishing function

Assume that f may be extended to f:R® — R, with f € C"(R®) and
f(x) =0 for x € [0,1]°. Then
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Vanishing functions: combining 3 or more terms

Vanishing function

Assume that f may be extended to f:R® — R, with f € C"(R®) and
f(x) =0 for x € [0,1]°. Then

Take |A\| =1,3,5,... and m > (|A| — 1)/2, so that

1
o Z f(c+ AUc)

Ce(’:m,k

remains an unbiased estimator of Z(f). (Here, €, x is € plus the centers
of a few cubes immediately outside of [0, 1]°.)
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Vanishing functions: combining 3 or more terms

Vanishing function

Assume that f may be extended to f:R® — R, with f € C"(R®) and
f(x) =0 for x € [0,1]°. Then

Take |A\| =1,3,5,... and m > (|A| — 1)/2, so that

1
o Z f(c+ AUc)

Ce@m,k

remains an unbiased estimator of Z(f). (Here, €, x is € plus the centers
of a few cubes immediately outside of [0, 1]°.)

For instance, for A = 3, the expectation of a given term is the integral of f
over 3° sub-cubes. In return, each sub-cube is “visited” exactly 3° times.
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Vanishing functions: combining 3 or more terms

Vanishing estimator (any r > 1)

Based on n = rk® evaluations of f:

Z ny, (c+AiUe)

cEkal 1

where (A1, A2, A3,---) =(1,-1,3,-3,5,-5,---), and the /s are chosen

so that

r

27 f(c+ Niu)=f(c)+ O(||u]|")

i=

1
(Vandermonde system)
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3 or more terms

Vanishing functions: combining

Conclusion

We get an unbiased estimator, with (optimal) RMSE O(n=1/2-"/%)
(provided f is C"), which is easy to compute.
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Vanishing functions: combining 3 or more terms

Conclusion

We get an unbiased estimator, with (optimal) RMSE O(n=1/2-"/%)
(provided f is C"), which is easy to compute.

However, this is restricted to vanishing functions.
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Vanishing functions: combining 3 or more terms

Practical use of the vanishing estimator

An integral over R® may be rewritten as:

/]RS h(x)dx = /]RS q(x)gggdx

GO
- /[o,us a(T(u)°

where T is the map such that T(U) is a r.v. with probability density g
(Rosenblatt transformation, a.k.a. multivariate inverse CDF).
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Vanishing functions: combining 3 or more terms

Practical use of the vanishing estimator

An integral over R® may be rewritten as:

O
/Rs h(x)dx—/Rs 90 oy
_ / h(T(w)
(0,15 (T (u))

where T is the map such that T(U) is a r.v. with probability density g
(Rosenblatt transformation, a.k.a. multivariate inverse CDF).

The so-obtained integrand is vanishing as soon as g < h in the tails; take ¢
as e.g. a product of independent Student variables.
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Vanishing functions: combining 3 or more terms

Practical use of the vanishing estimator

An integral over R® may be rewritten as:

/]RS h(x)dx = /]RS q(x):,g;dx

h(T
_ [ HT,,
[o,11= q(T (1))
where T is the map such that T(U) is a r.v. with probability density g

(Rosenblatt transformation, a.k.a. multivariate inverse CDF).

The so-obtained integrand is vanishing as soon as g < h in the tails; take ¢
as e.g. a product of independent Student variables.

See numerical experiments.
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General case: control variates and numerical derivatives

Section 3

General case: control variates and numerical
derivatives
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General case: control vz

ates and numerical derivatives

Control variates

General recipe to reduce the variance of a Monte Carlo estimator:
1 n
v
Nz

Find variables Z; such that:
(] E[Z,] =0
e Corr(Y;,Z)>0

Then replace the above estimator by:

1 n
~>(Yi-2)
i=1
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Back to Haber's second estimator

I(f Z g(U

cely

where

gc(u) = %f(c +u)+ %f(c —u)="f(c)+ %UTHf(C)U + O(J|ul|*)
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General case: control variates and numerical derivatives

Back to Haber's second estimator

I(f Z g(U

cely

where

ge(u) = S+ u) + 5F(c — u) = F(e) + suT He()u+ O(ul*)

Obvious control variate:
1 1
EUCTH,r(c) U.—E [2 UCTHf(c)UC]

Drawback: requires to compute the Hessian.

Nicolas Chopin (ENSAE, IPP (Institut Polyte[gii)IIatelge [T detel\EX atolT 1 ecr-sETalely IR [oI]:1 Mol 23/38



TEXTS IN APPLIED MATHEMATICS

Numerical
Mathematics

&) Springer

YAV = R B N e Wi#E H igher-order stochastic integration through ci 24 /38



TEXTS IN APPLIED MATHEMATICS

Numerical
Mathematics

&) Springer

Cover of A 660+ page book on numerical mathematics with 0 page on
numerical derivatives.
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General case: control variates and numerical derivatives

Things to know (about numerical derivatives)

Based on finite differences, e.g. for f : R — R

f(x+h)—f(x—h)
2h
“f(x +2h) +8F(x + h) — 8F(x — h) + F(x — 2h)
12h

= f'(x) + O(h%)

= f'(x) + O(h")
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General case: control variates and numerical derivatives

Things to know (about numerical derivatives)

Based on finite differences, e.g. for f : R — R

f(x+h)—f(x—h)
2h
—f(x+2h) 4+ 8f(x + h) — 8f(x — h) + f(x — 2h)
12h

= f'(x) + O(h%)

= f'(x) + O(h")

Choice of h: non-trivial trade-off between formula error and finite precision
error.
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General case: control variates and numerical derivatives

One thing to know about multivariate numerical derivatives

It is actually easy (and fast) to approximate any partial derivative on a
grid: that is, if you have already computed f(c) for each ¢ € &, then you
can approximate D%f(c) by combining the neighbour terms, f(c £ Ah),

with h=1/k, A € N.
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General case: control \ es and numerical deriv

Back to our problem

We compute f(c) for each centre ¢ € €, of our stratified sub-cubes.
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General case: control \ es and numerical derivatives

Back to our problem

We compute f(c) for each centre ¢ € €, of our stratified sub-cubes.

We obtain all the numerical derivatives of order 2, 4, ... by doing linear
combinations of these f(c).
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General case: control \ es and numerical deriv

Back to our problem

We compute f(c) for each centre ¢ € €, of our stratified sub-cubes.

We obtain all the numerical derivatives of order 2, 4, ... by doing linear
combinations of these f(c).

We replace in our control variates the true derivatives with these numerical
derivatives.
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General case: control \ es and numerical derivatives

Back to our problem

We compute f(c) for each centre ¢ € €, of our stratified sub-cubes.

We obtain all the numerical derivatives of order 2, 4, ... by doing linear
combinations of these f(c).

We replace in our control variates the true derivatives with these numerical
derivatives.

This means that h = 1/k, so our numerical derivatives are not very
accurate, but they are just accurate enough to avoid changing the order of
convergence.
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General case: control variates and numerical derivatives

Formal definition of our estimator

For a given r > 2

% > {gc(Uc)+ 3

CE@O’/(

with gc(u) = {f(c+ u) + f(c — u)}/2.
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General case: control variates and numerical derivatives

Formal definition of our estimator

For a given r > 2

DYf(c)(US —EUS)

%Z ge(U)+ Y.

CE@O’/( 1=2, 7...,I’|Cz|:l
with gc(u) = {f(c+ u) + f(c — u)}/2.

Based on n = 3k® evaluations: 2 third at random places, one third at the
centres c.
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General case: control variates and numerical derivatives

Formal definition of our estimator

For a given r > 2

L2 SR FXUARUED DU DI L O (VI

CE@O’/( 1=2, 7...,I’|Cz|:l
with gc(u) = {f(c+ u) + f(c — u)}/2.

Based on n = 3k® evaluations: 2 third at random places, one third at the
centres c.

When r = 1, 2, we recover Haber's estimators.
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General case: control variates and numerical derivatives

Properties of our general estimator

Assuming f € C"([0, 1]°):
e Optimal RMSE O(n~1/2=1/s).
e Error is O(n~"/%) with probability one.

@ Error is zero if f is a polynomial of order p < r.
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Numerical results: general estimator

Section 4

Numerical results: general estimator
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Dick (2011)'s example (s = 1,2)

fi(u) = ue!

rel-mse
S

4 s
102 10° 10* 10° 10°
nr evaluations

fr(u) = uet2

10¢ 10° 10°
nr evaluations

Relative MSE (mean squared error) vs number of evaluations for the
vanishing estimator (thick lines) and Dick’s estimator (dotted line). The
value of r (stratified) or « (Dick’s) are printed next to each curve. Left: f;

Right: f,.
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Dick (2011)'s example (s = 4,6)

6 6
fo(u) = ul=1 Jex| u
fa(u) = upuduzetrvzvas s(w) rlz ' P f:nl '
107
1074
1077
o [ T
@ @
£ s . 2
[ g 107
4
10-13
10-23 -
16
1027 - == strat 10
Dick
10t 102 10° 10* 10° 10° 107 102 10° 10* 10° 10° 107
nr evaluations nr evaluations
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Numerical results: vanishing estimator

Section 5

Numerical results: vanishing estimator
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Numerical results: vanish stimator

Setup

Marginal likelihood (evidence) of a Bayesian logistic model, Pima dataset;
we take the s first predictors for s =1,...,8.
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vanishing estimator

Numerical results

Setup

Marginal likelihood (evidence) of a Bayesian logistic model, Pima dataset;
we take the s first predictors for s =1,...,8.

We rewrite this quantity as an integral over [0, 1]° using importance
sampling (and a heavy-tailed proposal).

Higher-order stochastic integration through ci 34 /38
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Plots s = 2, 4

Pimas=2

10t 10% 10° 10* 10° 10°
nr evaluations

rel-var

Pimas=4

10 -
1079 -
10712 -
1015 -

10718 -

102 10° 10* 10° 10° 107 10° 10°
nr evaluations
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Plots s = 6, 8

Pimas=6 Pimas=8
10* -
10-2 107
105 1072
§ §
o 107 ] 10
1077
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Conclusion

Concluding remarks

@ Optimality results for random quadrature were known for a long time,
but practical estimators were more or less lacking.

@ Variance estimates (from a few runs) available.

@ Of course, they are not so practical when s > 10. Consider the
scrambling QMC strategy of Owen (1998) instead.
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