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Motivation

Non-differentiable distributions appear in e.g. imaging, genetics, biology.

Consider for example 7m(x) o exp{—|z|} or m(z) o< |z + 6\1)*1/21(,,_1/2(\37\ +€).
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Motivation

Problem: Can't easily use gradient-based sampling methods.
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Solution |

Target a different distribution.
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Solution |

Target a different distribution.

Instead of 7 o exp{ g(z

g () = inf[g(2) +

} target 7 o<exp{ a( } where
35/l — 2||?] is the Moreau-Yosida envelope of g.
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Solution |

Target a different distribution.

Instead of 7 o exp{ g(z } target 7 exp{ a( } where
gMz) = inf, [g(2) + 55||z — z[|] is the Moreau-Yosida envelope of g.

If g is lower semi-continuous and convex, then for A > 0, V¢* is 1/\-Lipschitz continuous,

and given by

Vg/\(a:) (:t: — prox/\(a:)),

y\'—‘

where

1
proxg‘(a:) = argmin[g(u) + -z — ul*].
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Can correct with Metropolis-Hastings or accept the error.
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Solution |

Can correct with Metropolis-Hastings or accept the error.

Theorem

Let g = —logm be the negative logarithm of a probability density function, with g being a
proper lower semi-continuous convex function, and L-Lipschitz. Let g* be the Moreau-Yosida
envelope to g, and let 7 (z) = exp(—g*(2))/([ exp(—g*(2))dz) be a probability density
function. Then for any m- and m*-integrable f : X — R:

Er(f) = Ex(f)] < (exp(L?A) = DEo (1 £]) (1)
[Err(f) = Ex(f)] < (exp(L?A) = DER(|f]). (2)

The same inequalities hold if g = g1 + go with a convex and Lipschitz-continuous g1 and a
differentiable (but not necessarily Lipschitz-continuous) g.
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Various algorithms exist:
@ MY-ULA (= Unadjusted Langevin Algorithm targeting 7*)
@ MY-UULA (= Unadjusted Underdamped Langevin Algorithm targeting 7*)
@ SK-ROCK (= stabilised integrator targeting 7*)
@ pMALA (= proximal MALA, targeting m, MY-ULA + Metropolis Hastings)
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Can we use MYEs in PDMPs?
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Can we use MYEs in PDMPs? Even better...

E.g. Zig-Zag Sampler (ZZ): augment state space X C R? with v € {—1,1}%; target the joint
distribution p(x,v) = 7(x)U(v).
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Solution |l

Can we use MYEs in PDMPs? Even better...

E.g. Zig-Zag Sampler (ZZ): augment state space X C R? with v € {—1,1}%; target the joint
distribution p(x,v) = 7(x)U(v).

(2t)t>0 = (zt, vt )e>0 follows ODE (&, v;) = (v, 0) and switches ith velocity with rate

p%z<®:::p%z(mx,v)zrnax{o,axi

U@+u¢yw}.
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does not exist.}
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Consider a distribution 7(x)U(v) that is differentiable in x outside of Agy. If Ay is a Lebesgue
null-set, the Zig-Zag process with generator given by

Lzzf(x,v) = (Vaf(x),v) + > 0%, O[f(x, Fiv) — f(z,v)] has invariant distribution
m(z)U(v).
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does not exist.}

Aoz{xe)(\ﬂisuchthat ou
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Consider a distribution 7(x)U(v) that is differentiable in x outside of Agy. If Ay is a Lebesgue
null-set, the Zig-Zag process with generator given by

Lzzf(x,v) = (Vaf(x),v) + > 0%, O[f(x, Fiv) — f(z,v)] has invariant distribution
m(z)U(v).

A similar result holds for the Bouncy Particle Sampler (BPS).
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100 .
(@) oc [];=1 exp(=37 x |z5])

[ Algorithm | MY-ULA | MY-UULA [ SK-ROCK |

g=1 2.0 2.3 6.0
B8 =100 50.5 218.3 4197.4
’ Algorithm \ pMALA \ BPS \ 77 ‘
g=1 1.7 3.0 24.9
B8 =100 182.9 755.5 2037.4

Effective sample size per second for the fastest and
slowest mixing dimensions of the anisotropic Laplace
obtained from long runs of the respective algorithms.
Recall that the first three algorithms are asymptotically
biased, while the last three are asymptotically exact.
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Observations: y; € [0,27), i = 1...253. Likelihood is a
mixture of two wrapped asymmetric Laplace
distributions.

g = Y Hi for y — p; >0
Yy — i+ 2m, fory—p; <0

Ai/ﬁ?i ef)\in,ﬂ e(/\i/m)e
L(O|pi, Niy ki) = o <1 T W v S
i
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Examples
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Observations: y; € [0,27), i = 1...253. Likelihood is a
mixture of two wrapped asymmetric Laplace
distributions.

Yy — i+ 2m, fory—p; <0

e 14 (Ni/K:)0
L(O|pi, Mi, ki) Aitsi ( ¢ T >

9_{?;—/% for y — p; >0

- 1+ ,%22 1 — e~ 2mAik; e2m(Aifki) —q

Priors: u; ~ U[0,27], A\; ~Exp(1), k; ~Gamma(2,1/2),
p ~Beta(100, 100).
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’ Algorithm ‘ 1 ‘ A1 ‘ K1 ‘ p
BPS 3.36 | 164.80 | 6.29 | 2095.44
77 0.66 | 39.53 | 1.12 | 537.33
RWMH 2.88 | 37.01 | 4.52 | 1153.13

ESS/s for different variables. The ESS/s for the variables from the
second mixture are similar, as is expected due to the mixture
components being indistinguishable from one another.
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Imaging
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Imaging

1
aa) x exp (50 1Ho — 3l - a7V (o))

Original
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Imaging

1
aa) x exp (50 1Ho — 3l - a7V (o))

Left: The MSE of the mean estimates, estimated every
10 seconds. Right: The SSIM of the mean estimates,
estimated every 10 seconds.
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Conclusions

MYEs

@ are better at estimating
high-dimensional distributions

PDMPs

@ can more easily adapt to

_ ' anisotropic targets
@ require log-concavity (of the

non-diff. part) @ allow subsampling and

. . : parallelisation
@ require calculating/ knowing the

oroximal operator @ are inherently exact

@ require calculating event rates
@ can add a MH step q &
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Thank you for listening!
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