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Introduction

What is uncertainty quantification?
We try to better understand models with intrinsic randomness to them.

We will look at multilevel approximation for
PDE solutions with random coefficients where the diffusion coefficient is
periodic in its stochastic variables.
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Introduction

What is uncertainty quantification?
We try to better understand models with intrinsic randomness to them.

We will look at multilevel approximation for
PDE solutions with random coefficients where the diffusion coefficient is
periodic in its stochastic variables.

Note this is work in progress!!
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Problem setting

Consider the stochastic PDE over bounded, convex domain D C RY,

=V - (alx,y)Vu(x,y)) = f(x) x €D,
u(x,y) =0, x € 9D,

where f € L2(D) is deterministic. Our random coefficient is now periodic
in our stochastic variables,

a(x,y) = ao(x +ZS|n 2my;) i x)

j>1

where y; ~ Unif[—3, ] and ag, ¢); € L°(D) for j > 1 such that
> j>11i(x)] < oo forany x € D.

Kaarnioja, Kuo and Sloan (2020)
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Problem setting

Our assumptions
@ a0 € L=(D), vy € L(D) for all j > 1 and 3oy |4l < o0
Q@ 0<amin<a(x,y) < amax forall x e Dand y € Q
Q > o1 lWjllf < oo for some p € (0,1)

Q a9 € W1>(D) and > i>1 1Yillwree(py < oo where
IVllw.eo(py = max{[[v|eoe, |V V][ }

O |[Vrllree = [[¥2l[Loo(p) = -+

@ D is a convex bounded polyhedron with plane faces

Kaarnioja, Kuo and Sloan (2020)
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The plan

Considerations:
@ Our field is infinite dimensional

@ For approximation, we require the target function to be pointwise
well-defined in both x and y

@ Approximate the solution
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The weighted Korobov space

We are interested in the Hilbert space H, ~ of one-periodic L? functions
with defined on [0, 1]° with absolutely convergent Fourier series

The norm and inner product of H, ~ are

1120y == D [F(B) ray(h) and (f.g),. = F(h)Z(h)r,

g(h) ra(h),

heZs hEZd
with

1 2
fay(h) = [T 1w
Tsupp(h) j€supp(h)

For integer o, the norm can be written as
||f‘H(L‘y = Z %/ / (H ra(l)f(y)dyuzdyu'

oy GV Jo e o p=re e 03]
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The weighted Korobov space

He ~ is a reproducing kernel Hilbert space with kernel

e27rh-(xfy)
Kix,y) =Y

hEZS ravv(h) ’
which satisfies

Q@ K(x,y)=K(y,x) for all x,y € [0,1]°,

Q K(-,y) € Ho~ forall y € [0,1]°,

@ (f,K(y)),,=fly)forall f € Hyyandall y € [0, 1]°.

Abi Srikumar (UNSW) Multilevel kernel interpolation 7/31



Rank-1 lattices

belong to Quasi-Monte Carlo (QMC) methods, cleverly
designed integration techniques that are less susceptible to the curse of

dimensionality.

An n-point rank-1 lattice is given by oo

_ kzmod n

n

where z € U;, is the generating vector.

The generating vector is constructed using a  °2
component-by-component algorithm.

Abi Srikumar (UNSW)
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Lattice-based kernel approximation

We approximate f € H, ~ by the kernel interpolant of the form

n—1
W(F)(y) =Y aK(tr,y)  for ye[0,1].
k=0

which interpolates f at n rank-1 lattice points.

Abi Srikumar (UNSW) Multilevel kernel interpolation 9 /31



Lattice-based kernel approximation
We approximate f € H, ~ by the kernel interpolant of the form

n—1
W(F)(y) =Y aK(tr,y)  for ye[0,1].
k=0

which interpolates f at n rank-1 lattice points.
That is,

In(F)(t)) = f(t;) forall£=0,...,n—1.

Abi Srikumar (UNSW) Multilevel kernel interpolation 9 /31



Lattice-based kernel approximation
We approximate f € H, ~ by the kernel interpolant of the form

n—1
W(F)(y) =Y aK(tr,y)  for ye[0,1].
k=0

which interpolates f at n rank-1 lattice points.
That is,

In(F)(t)) = f(t;) forall£=0,...,n—1.

The coefficients ay are obtained by solving the resulting linear system,

n—1
f( ):ZakK( ,ty) forall4=0,....,n—1.
k=0
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Lattice-based kernel approximation

Note that:

© Kernel interpolant is optimal for given function values.
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a circulant matrix — with cost O(nlog n)
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Lattice-based kernel approximation

Note that:
© Kernel interpolant is optimal for given function values.

@ Following from properties of the kernel and lattice structure, we have
a circulant matrix — with cost O(nlog n)

© Aim is to construct the interpolant at a cheaper cost by leveraging
multilevel methods
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Multilevel methods

We want to estimate E[P], the easiest way is to take a direct average over
a number of samples

1 N
E[P] ~ > P,
n=1
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Multilevel methods

We want to estimate E[P], the easiest way is to take a direct average over
a number of samples

1 N
E[P] ~ > P,
n=1

Given a sequence Py, ..., P;_1 which approximates P, with increasing
accuracy, we have that

L
E[P.] = E[Po] + > _E[P; — Pr_y]-
/=1
This can be estimated by
1 S5 000 , o= L X pltn)  pltn)
AR LY L (P )
n=1 =0 n=1
Multilevel kernel interpolation
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Related work

o Multilevel methods
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Today: Theory for multilevel kernel interpolation !
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Formulation of multilevel kernel interpolant

We begin by defining
up = u,sf;

as the finite element solution at level £ with mesh width h, and dimension
truncated to sy.

We also use the notation /; := I, to indicate the kernel interpolant
constructed using ny lattice points.
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Formulation of multilevel kernel interpolant

For £ =0,1,..., consider a sequence of kernel interpolants /; using a
decreasing number of points np > n; > --- and a sequence of finite
element approximations uy using an increasing number of finite element
nodes, i.e., hg > hy > ---.

14 / 31
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Formulation of multilevel kernel interpolant

For £ =0,1,..., consider a sequence of kernel interpolants /; using a
decreasing number of points np > n; > --- and a sequence of finite
element approximations uy using an increasing number of finite element
nodes, i.e., hg > hy > ---.

Now, the approximation at the maximum level L € N is given by

L
liup = lpug + Z /((UK — Uéfl).
/=1
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Error breakdown

The total approximation error can be broken down as follows:

L

u— /LUL = u— Z /g(Ug — Ugfl)

£=0
L
=u-— u,S,LL + Z(/ — Ig)(ug — up—1)
{=0
L
=u— vt =ty (= ) (ug— upy)
(=0

——

DT error FE error

ML KI error
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Error breakdown

The total error can be expressed as

\//Q /D(“(XJ) — lLu(x,y))? dx dy
S ——
" \//Q /D(”SL(X’Y) — upt(x,y))? dx dy

L
+ ; \//Q/D((’ — Ip)(ue — ug—1)(x,y))? dx dy
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Dimension truncation error

Theorem (Kaarnioja et al. (2022))

Suppose the PDE problem satisfies the required conditions. Then for any
s € N, there exists a constant C > 0 such that

\/ / / ((x,y) — (6, )2 dxdy < €55 [l o100,
QJD

where the constant C > 0 is independent of s and f.
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Finite element error

Theorem (Kaarnioja et al. (2022))

Under the required assumptions, for every y € Q and f € L?(D), the
following asymptotic convergence estimate holds

lu(y) = un(, ¥) 20y < C h? |fll2py ash—0,

where the constant C > 0 is independent of h and y.
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Finite element error

Theorem (Kaarnioja et al. (2022))

Under the required assumptions, for every y € Q and f € L?(D), the
following asymptotic convergence estimate holds

lu(y) = un(, ¥) 20y < C h? |fll2py ash—0,

where the constant C > 0 is independent of h and y.

Applying to dimension truncated problem, we have

\/ /Q /D (us(x,y) — ui(x.y)2 dxdy < C B [|f 1200,
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Multilevel error

We now bound the Multilevel kernel interpolant component of error.
_ 5
Recall up = Up, -

L
éz; \//Qe /D((/ — o) (ug — ug—1)(x,y))? dx dy

:=¢A;A¥U—6XWX&y»“hdy

L
0\ 0 we2axay.
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Kernel interpolation error

We define the worst-case error of approximation wrt the L2-norm as

e (I, L2) == sup ||[f — In(F)]| 2.

IIfHHa,'y<1
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Kernel interpolation error

We define the worst-case error of approximation wrt the L2-norm as
eV (I, L) = sup |[f — I,(f)|2-
IIfHHOe,’Y<1
Following from the optimality of the kernel interpolant, we have
eV (I, L2) < Sp(2).

Sn(z) (which bounds the trig polynomial approximation) is shown in
Cools, Kuo, Nuyens and Sloan (2021) and Kuo, Mo and Nuyens (2023+)
to have convergence O(n~®/2+9) for § > 0.
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Kernel interpolation error

Theorem (Kaarnioja et al. (2022))

Given s > 1, o > 1/2 and weights v = (7 )ucn, a lattice-based kernel
interpolant I, can be constructed such that

" (In,La) < Cy5n~ 2T forall§ € (0,a/2)

where the implied constant depends on « but is independent of s.
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Multilevel error

Now, considering a term in the multilevel error component,

\//Qz /D((/ — 1)) (up — up—_1)(x,y))? dxdy

# /D [ (0= 1w )2 ay x

<\//D (7= 1) (e — ue—1)(x, ) 132,y dx

éem)r(/b L2(Q%))\// ||(ug - Ué—l)(x, ')H%—IQ.Y(QZ) dx
5 ;
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Multilevel error

e"r (I, [2(Q) \// (i, = uh, )R, 9X

< " (1, 120 [\/ LI = ) e 4
+\/ [ e = ) x 1, e dxw e =i ) a0
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Multilevel error
Multilevel DT error

Theorem (Gilbert, Giles, Kuo, Sloan and S. (In prep.))

Suppose the PDE problem satisfies the required assumptions. For o > 1,

f € L?(D) and b; :== % the weight parameters (v, )ucn can be
chosen such that

<€ 11l H-1(D)

—_ . l_
Smm(P 1,n)

> ;‘( > (\m\+k)!Hb;"f5(a,m;)>2,

uC{lis} "™ N me{La}l icu

where n > 0, k > a and C > 0 is independent of s; and s;_1.
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Multilevel error

Multilevel FE error

Theorem (Gilbert, Giles, Kuo, Sloan and S. (In prep.))

Suppose the PDE problem satisfies the required assumptions. For o > 1,

weight parameters (7, )ucn, f € L2(D) and defining b; := % the
following estimate holds

\/ [ = ), oy e

2
<CRIfleoy, & o X ml+sHIES(@m)) |

uC{l:s} " N me{La}l icu

where C > 0 is independent of h.
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Multilevel error

Multilevel FE error

Sketch of the proof:
© Cauchy-Schwarz and Fubini's theorem
© We need bounds for [|0"(u — up)(-, y)ll12(p)
© Theorem.

16¥ (v = un)ll oy < € hlIFllz (2m)™ Y~ (Im| +2)16™ T S(vi, mi)

m<v i>1

@ Aubin-Nitsche duality argument
© Theorem.

10¥ (u = up)ll2(py < € B2z 2m)™1 Y (Im] +5)1B™ [ S(vi, mi)

m<v i>1
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Putting it together

Error =~ DT error + FE error + ML KI error

Theorem (Gilbert, Giles, Kuo, Sloan and S. (In prep.))

Suppose the PDE problem satisfies the required assumptions. For o > 1,
and f € L%(D), the weight parameters (V,)ucn can be chosen such that

\//Q/D(“(XJ) — lu(x,y))? dx dy

1

-5 —min($—1,7)
S Cparams <SL g Z % h@ 1 SZ 1 )>

=0 Ny
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Numerical results

TBA.
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Conclusion

We construct a multilevel kernel interpolant in the hope of reducing the
current cost.
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To do

@ Full implementation and numerics of multilevel methodology
@ Possibly improve multilevel dimension truncation error

@ Multilevel approximation for other applications
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Conclusion

We construct a multilevel kernel interpolant in the hope of reducing the
current cost.

To do

@ Full implementation and numerics of multilevel methodology
@ Possibly improve multilevel dimension truncation error

@ Multilevel approximation for other applications

Thank you for your attention :)
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