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Lattice rules



Deterministic lattice rules

For f € H,, approximate the d-dimensional integral

I(f) := /[071](1 f(x)dx

by an n-point lattice rule with generating vector z € Z¢
1 zk mod n
sz(f) = ; Z f(n>
kEZn

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup |I(f) - Qn(f)‘
fEH
flla<1
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Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup |I(f) - Qn(f)‘
fEHA
Iflla<1
~~ For good lattice rule Q, , converges like n=%||f]|,.

(Optimal. Bakhvalov.)
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Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

~ Possible to get n=*~1/2||f||,. (Optimal. Bakhvalov.)
How?

Random shifting? Random generating vector? Random n?
What is necessary?



Function space

Korobov space of dominating mixed smoothness o > 0:

hezd

Mo = {f € Lp([0,1]%) : [IF]2 := > r2(h) [F(h)P < oo},
with
ra(h) = ’YSTJ]';p(h) H |h.l‘a

Jj€supp(h)

Weighted spaces. . . (Sloan, Wozniakowski. . . )



Example of a good lattice rule

Example: n =21 and z = (1,13) (Fibonacci lattice rule)
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Constructive methods for deterministic error:
fast component-by-component (Nuyens & Cools 2006, . ..)
— Fixed vector z for a given n.

(Or sequence of n = p™, Cools, Kuo & Nuyens 2006).



Deterministic error

For f € H,, with a > 1/2, and

f(X) = Z )?(h) e27rih~x’ f(h) = / f(X) e—27rih‘x C|X,
hezd [0,1]



Deterministic error

For f € H,, with a > 1/2, and

=) f(n)emhx f(h) = / f(x)e 2" xdx,
[o.1)¢

hezd
we have
L e B O R DO
keZn [0,1]¢ 0#£hezd
h-z=0 (mod n)

by the character sum for Z,,, we have for a=z-h e Z,

% Z exp(2mik a/n) = 1{a =0 (mod n)}.

kE€Zp



The good set

Define the “good set” of generating vectors for a prime p as

4
G(p) _ e Zd : edet Q S inf = I’;l//\ h
- ( p,z) XE[1/2,a) \ P O#%Zd ( )



The good set

Define the “good set” of generating vectors for a prime p as

4
G(p) _ e Zd : edet Q S inf = I’;l//\ h
- ( p,z) XE[1/2,a) \ P O#%Zd ( )

This set has more than [3 p?] elements due to
2

id > [edet(Qp,z)} < S o MA(h), YA€[1/2,0),

zeZd P 0#£hezd

and Markov's inequality.
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One-dimensional intuition

e “Lattice points™ xx = k/n, k € Z,, for n =4,5,6:

8 . . . 1
8 . . . . ‘i
8 . . . . . ‘i
e “Dual lattice™ h=0 (mod n):
—12 -8 —4 12 h
—10 =5 10 h
—12 —6 12 A
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Zoom out a bit
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Zoom out a bit
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Prior art




e Bakhvalov (1961): lower and upper bounds using lattice rules
for randomized error.

o Kritzer, Kuo, Nuyens, M. Ullrich (2019): randomised algorithm
using lattice rules to achieve the near optimal rate.

Algorithm 1 [KKNU19]
Uniformly sample a prime p € P,,.

Uniformly sample a generating vector z € G(P),
Use the lattice rule with generating vector z and p sample points.

10



Modifying the good set to allow for CBC construction

Define

2X

G 4
Gl =QzseZy 6F0(z) < inf | = S rVA(h)
’ ’ rell/2,0) | p ,
0£heZ

hy#0

This has more than E p] elements by a similar method to before.

Depends on the previously fixed values of 2/ = (z1,...,24_1).

11



CBC randomised algorithm

Dick, Goda and Suzuki (2022): component-by-component method.

Algorithm 2 [DGS22 / ..
Uniformly sample a prime p € P,,.
for j=1toddo

Uniformly sample z; € g(spz)/'

end for

Use the lattice rule with generating vector z and p sample points.

12



Existence of a fixed vector method
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Is it possible to fix the vector prior to the algorithm? Yes!
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Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n=®~1/27 Yes

Define the algorithm KJ :

Algorithm 5 Fixed vector random algorithm (Kuo, Nuyens, Wilkes)

Uniformly sample p € P,,.
Apply the lattice rule with the predefined z and p sample points.

13



Existence result

Theorem (Kuo, Nuyens, Wilkes)
There exists a vector z € Z9 which achieves the bound

ran * C)\ In(n) —1/A
e (Kn2) = — i Y. A (h)
0#hezd

forall%g)\<a.
For the proof:
We take z € Z§, with N := [ep, P-

We average over all vectors which are good in the deterministic
sense for all of the primes.

14



1. The vectors involved have incredibly large components.
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1. The vectors involved have incredibly large components.

e Use Chinese remainder theorem:

Zn = Q) Zp.

pEP;,

e The generating vector is only ever considered modulo one of the
primes in P,. We break down the vector z into multiple vectors,

7o (Z(Pl)’ e z(pL))_
2. Existence, but what about construction?

15



CBC construction of the vector




What about the usual method?

We follow the standard CBC approach. If z; is a component yet to
be fixed, we can write

[ (K: )] = [ (K} ]2 + ©(za).
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What about the usual method?

We follow the standard CBC approach. If z; is a component yet to
be fixed, we can write

[ (K: )] = [ (K} ]2 + ©(za).

If we were to try to minimise ©(z4) at each dimension, we would
have to search all possibilities that z4 could take.

This would be an O(dn"*3) algorithm!

16



Instead, we define a quantity T(p)(zc(,p)) which satisfies

z T(P)

pEP,

O(zg) =

PP
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Instead, we define a quantity T(p)(zc(,p)) which satisfies

z T(P)

pEP,

O(
(za) |P 2

The quantity Tp(zc(,p)) = T0)(2, {z‘(jr)}r<p; zc(,p)) is cleverly
rewritten so as to not depend on the value of z((,q) for any g > p.

This allows us to fix the residues of the component zy modulo each

of the primes in P, in increasing order. This uniquely sets the value
of zq € L.

17



Constructing the vector

Algorithm 6 Optimal vector construction at n (Kuo, Nuyens, Wilkes)

for j=1to d do
for p € P, in increasing order do
Compute HJ(p)(zj(p)) for all zJ-(p) € Zp.
Compute Tj(p)(zj(p)) for all (P € Zp.

J
Choose from the [7p] best choices for ngp) to minimize Tj(p).

end for
end for

e Calculating the randomised error of an arbitrary vector
takes O(dn*In(n)~2).
e The complexity of this construction algorithm is only O(dn*)

for product weights.
18



Randomised error vs deterministic error for a = 1,

d

We use product weights v = {j73}5_;.

Error = 1/n"(1+1/2)
=== Error=1/n"1

Randomised Error

—8— Randomised alg: gradient = -1.36
—e— CBC: gradient = -0.97

T T
10? 10%
n

e The deterministic algorithm is Q, , for z chosen by CBC.

e The randomised algorithm is K77 , with z chosen via the
described method.

19



Randomised error vs deterministic error for o = 2,

i — [;-3\d
We use product weights v = {j"}7_;.
Error = 1/n"(2+1/2)
—=- Ermor =1/n"2
1074
g
i
]
&
E
=)
2 108
3
3
5| Randomised alg: gradient = -2.3
1079 _o cae: gradient = -1.81

T T
10? 10%
n

e The deterministic algorithm is Q, , for z chosen by CBC.

e The randomised algorithm is K77 , with z chosen via the
described method.
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Conclusions

e Fixed vector algorithm:

Theorem
Fora > 1/2 and all A € [1/2,«):

rans ok C, Inn)t/2
(k) < A g O

e For a € (0,1/2]: the usual trick does not work since we want a
fixed vector z.

e Solved by relaxing the sup in the error bound:

Theorem
Fora> 0 and all A € (0,), r € N and r > 1/(2)):

@

rMS [ pook 1 Gr |n(n) e A
(Kn,z < A+ (r—1)/(2r) <C1 |n(r+1)> (:U*d,a,‘Y()‘)) C

21



Thanks for listening!
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