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Introduce kinetic Langevin dynamics, some discretisations and their
convergence guarantees;

A method to prove convergence with weak stepsize assumptions in
the strongly log-concave setting;

The effect of using a stochastic gradient approximation on
convergence;

An application to Bayesian Logistic regression;
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Underdamped Langevin Dynamics

A popular MCMC method is based on the underdamped Langevin
dynamics SDE:

dVy = —VU(X;)dt — yVedt + \/2ydW,
dXt - tht,

where v is a friction parameter. This has been studied by physicists

([Einstein, 1905]) and mathematicians and has invariant measure
T oc exp (—U(x) — [|v|]?).
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Underdamped Langevin Dynamics

A popular MCMC method is based on the underdamped Langevin
dynamics SDE:

th = —VU(Xt)dt — ’}/tht + 2’7th
dXt — tht,

where «y is a friction parameter.
In practice this SDE is discretised and the individual timesteps generated

by integration are viewed as approximate draws from the target
distribution.
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Popular Discretisations

The second order dynamics have additional complexity compared to the
overdamped dynamics and there are many more possible discretisations.
These include

e Euler-Maruyama (EM);

e BAOAB, OBABO, OABAO splitting methods
[Bussi and Parrinello, 2007, Leimkuhler and Matthews, 2013];

@ Stochastic Euler Scheme (SES) [Ermak and Buckholz, 1980];

@ Stochastic Position Verlet (SPV), Stochastic Velocity Verlet (SVV)
[Melchionna, 2007];

e BBK scheme [Briinger et al., 1984];
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A metric of error: Non-asymptotic guarantees

A metric of error that they use is

Wa(poPp, 1) < WalpoPp, pon) +Wa(pin, )

Convergence Rate Bias

for some initial measure pg and target measure p and Py is the transition
kernel of the discretisation with step-size h and invariant measure .

The aim is to optimally tune parameters to minimise the number of steps
for
Wa(uoPp, ) < €

for some error e.
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A metric of error: Non-asymptotic guarantees

A metric of error that they use is

Wa(poPp, 1) < WalpoPp, pon) +Wa(pin, )

Convergence Rate Bias

for some initial measure pg and target measure p and Py is the transition
kernel of the discretisation with step-size h and invariant measure .

The aim is to optimally tune parameters to minimise the number of steps
for
Wa(uoPp, ) < €

for some error e.

This talk: Convergence rate to the invariant measure for many different
discretisations, trying to get results that hold for a large range of stepsizes.
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Splitting Methods

One can split up the dynamics into parts which can be integrated exactly,
see [Bussi and Parrinello, 2007].

dV, = —VU(X;)dt — v Vedt + /2ydW,
dX, = Vidt,
Then you can integrate each part exactly
B:v—v—hVU(x),
A:x — x+ hv,
O:v—nv+ ﬂ )

where 7 := exp (—yh). For example the second order method BAOAB.
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Splitting Methods

One can split up the dynamics into parts which can be integrated exactly,
see [Bussi and Parrinello, 2007].

dV, = —VU(X;)dt — v Vedt + /2ydW,
dX; = Vidt,
Then you can integrate each part exactly
B:v—v—hVU(x),
A:x — x+ hv,
O:vonv+ ﬂ )

where 7 := exp (—yh). For example the second order method BAOAB.

Remark
One can create a kinetic Langevin integrator by considering a Hamiltonian
integrator between two O steps. For example the randomised midpoint
integrator of [Bou-Rabee and Marsden, 2022], we will refer to this
integrator as rOABAO.
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Stochastic Euler Scheme

A popular method in machine learning literature (the Stochastic Euler

Scheme) is based on fixing the force over an interval and integrate
A+ B+ O exactly.

1—

h+n-—1
Xip1 = Xi + . Z VU (Xk) + Ck+1,

1 _
Vigr = Vi — TUVU(X,() + Wkt1,

[Cheng et al., 2018, Dalalyan and Riou-Durand, 2020,
Sanz-Serna and Zygalakis, 2021]
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We assume that the target measure takes the form
p(dx) o exp (—U(x))dx,

for a potential U.

Assumption (M-V Lipschitz)

There exists a M > 0 such that for all x,y € RY

VU (x) = VU(y)| < M|x—y|.

Assumption (m-convexity)

There exists a m > 0 such that for all x,y € R?

(VU(x) = VU(y),x —y) > m|x—y[>.

There are results in the non-convex setting see for example
[Eberle et al., 2019].
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Twisted norm and Wasserstein Distance

@ One cannot get Wasserstein convergence with respect to the standard
Euclidean norm, but one can get Wasserstein convergence with
respect to a “twisted Euclidean norm”. !

1 V) 1136 = [1X]12 + 2b(x, v) + al|v]P?,

for a, b > 0 such that b? < a.

1[Cheng et al., 2018, Dalalyan and Riou-Durand, 2020, Monmarché, 2021,
Gouraud et al., 2022, Sanz-Serna and Zygalakis, 2021]
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Twisted norm and Wasserstein Distance

@ One cannot get Wasserstein convergence with respect to the standard
Euclidean norm, but one can get Wasserstein convergence with
respect to a “twisted Euclidean norm”. !

10, V) 1136 = [IxI[2 + 2b(x, v) + al|v]?,
for a, b > 0 such that b? < a.

We define the p-Wasserstein between two probability measures y and v
with respect to the norm || - ||, to be

1/p
Wo,ab (v, 1) = <geirr('zf,u) /de |21 — 2|5 ,d¢ (21722)) :

where ' (i, v) is the set of measures with marginals p and v (the set of all
couplings between 1 and v).

1[Cheng et al., 2018, Dalalyan and Riou-Durand, 2020, Monmarché, 2021,
Gouraud et al., 2022, Sanz-Serna and Zygalakis, 2021]
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Wasserstein Convergence

Let zx = (xk, vk) and Zx = (Xk, Vx) be two synchronously coupled
trajectories of a numerical scheme for kinetic Langevin. Then if they have
the contraction property

1Zk41 = zkrll55 < (1= c (M) 12k — 2135
for a, b > 0 such that b?> > a. Then we have that
W3 (PR, pPR) < C(1 = c ()" W, (v, ).

forall 1 < p < .
Our aim is to find a and b to provide explicit assumptions on the stepsize
h and friction parameter +.
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Convergence rates?

Let Z; = Z; — z; for j € N, then
Zki1 — zkr1ll3p < (1 — c (M) |12k — il 3 5, (1)

is equivalent to showing that

1 b
_ _ _ pT 5 > _
z] ((1 c(h)N—P NP) 7, >0, where N <b a),

and Zx41 = PZzy.
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Convergence rates?

Let Z; = Z; — z; for j € N, then
Zki1 — zkr1ll3p < (1 — c (M) |12k — il 3 5, (1)

is equivalent to showing that

1 b
_ _ _ pT 5 > _
z] ((1 c(h)N—P NP) 7, >0, where N <b a),

and Zx41 = PZzy.

Proving contraction is equivalent to showing that the matrix
H := (1 —c(h)) N — PTNP = 0 is positive definite.
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As an example we have for the Euler-Maruyama scheme the update rule
for z,

Xk+1 = Xk + hvi, Vi1 = Vi — Yhvi — hQXy,

where by mean value theorem we can define
Q = [ V2U(Sk + t(xk — %x))dt, then VU(%) — VU(xk) = QX. One

can show that
p_ / hl
- \—hQ (L—~h)1)"
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Convergence rates?

The matrix H := (1 — c¢(h)) N — PT NP > 0 is symmetric and hence of

the form
A B

we can show that H is positive definite.

Proposition

Let H be a symmetric matrix of the form (2), then H is positive definite if
and only if A= 0 and C — BA™'B = 0. Further if A, B and C commute
then H is positive definite if and only if A = 0 and AC — B? » 0.
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If 2 > O(M), for the choice of a = 47, n = exp {—vh}, we have

Algorithm b c(h) step-size restriction
EM 1/ O(mh/~) O(1/7)
BBK h/2+1/y O(mh/~) O(1/7)
SPV and SVV | h/(1 —1n) O(mh/~v) O(1/v)

BAOAB h/(1—n) | O(mh?/(1 7)) O(1/vM)
OBABO h/(1—mn) | O(mh?/(1—1n)) O(1/VM)
rOABAO h/(1—n) | O(mh?/(1—n)) O(1/vVM)
SES/EB 1/ O(mh/~) O(1/9)

The convergence rate of the continuous dynamics on this class of
functions is known to be O(m/~).

June 2023
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High friction limit

If you take the limit as v — oo for BAOAB we obtain
h? h
Xkl = Xk — ?VU(Xk) +3 (€k + &k+1) 5

which is simply the [Leimkuhler and Matthews, 2013] (LM) scheme with

stepsize h?/2 and lim,_, c (h) = "QT’".
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High friction limit

If you take the limit as v — oo for BAOAB we obtain

h? h
X1 = Xk = 5 VUK) + 5 (6 + &)
which is simply the [Leimkuhler and Matthews, 2013] (LM) scheme with

stepsize h?/2 and lim,_, c (h) = "QT’". Now we take the limit as v — oo

for OBABO we obtain
h2
X1 = Xk — ?VU(XI() + h€k+1,

which is the Euler-Maruyama scheme for overdamped Langevin with
stepsize h?/2, which has convergence rate O (h*m).
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High friction limit

If you take the limit as v — oo for BAOAB we obtain

h? h
X1 = Xk = 5 VUK) + 5 (6 + &)
which is simply the [Leimkuhler and Matthews, 2013] (LM) scheme with

stepsize h?/2 and lim,_, c (h) = "QT’". Now we take the limit as v — oo

for OBABO we obtain

h2
Xkt1 = Xk — ?VU(Xk) + hkt1,

which is the Euler-Maruyama scheme for overdamped Langevin with
stepsize h?/2, which has convergence rate O (h*m).
e Euler-Maruyama for Kinetic Langevin Dynamics (no well-defined
limit).
e Stochastic Euler Scheme: we obtain the update rule xx11 = xx in the
limit.

Peter Whalley (UofE) arXiv:2302.10684 June 2023 16 /28



Convergence Rates Plots
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Figure: Contour plots of In 177;(/7) for an anisotropic Gaussian with M = 10 and
m=1.
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Connection with HMC

[Gouraud et al., 2022] can explain the behaviour of OBABO and BAOAB
through its relation to another sampling method Hamiltonian Monte
Carlo. OBABO can be written as the velocity verlet integrator

h
v%v—EVU(X)
X — X + hv

Vv — gVU(X)

with auto-regressive velocity refreshments given by

v v+ /1 —n%,

where & ~ N(0,1). This is precisely HMC with partial velocity
refreshments.

Peter Whalley (UofE) arXiv:2302.10684 June 2023 18 /28



Tightness of restrictions

e For this method of proof we require v2 > O(M) [Monmarché, 2020].
e Stability threshold for Euler-Maruyama, BAOAB, OBABO are the
same as the step-size restriction for Gaussian targets.

e For other schemes the stability threshold for Gaussian target is not
the same as the step-size restriction, but we do not expect the
schemes to have reasonable bias outside this regime.
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Stochastic gradients

A stochastic gradient approximation of a potential U is defined by a
function G : R"” x Q2 — R"” and a probability distribution p on a Polish
space €2, satisfying that G is measurable on (R, F), and that for every
x € R", for W ~ p,

E(G(x, W)) = VU(x).

Assumption (Variance of Jacobian)

We assume that the Jacobian of the stochastic gradient G, D G(x, W)
exists and it is measurable on (Q2, F). We also assume there exists Cg > 0
such that for W ~ p,

sup E||DxG(x, W) — V2U(x)||? < Cg.
xER"
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Convergence with Stochastic gradients

Let Zy = Zx — z, if we synchronously couple the stochastic gradients we
are able to get the expected contraction result (Q = E(Q) and Q is
defined by MVT for G):

E A 2 E A 2
Bl o < (- canl) 200 + 2 (pva ol g o) &
Algorithm c(h)
EM O (mh/y — h*Cg /M)
BBK O (mh/~y — h*Cg/M)
SPV @ (mh/'y hZCG/I\/I)
SVV O (mh/y — R*Cg /M)
BAOAB | O (h2m/(1 —n) — h>Cg (77//\/1 + h2))
OBABO O (hPm/(1—n) — h*Cs/M)
rOABAO | O (h?m/(1—n) — h*Cg (n/M + h?))
SES/EB O (mh/y — B*Cg /M)
Table: Contraction rates c(h) in stochastic gradient setting
June 2023 21/28
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Simulation example - MNIST classification

e MNIST data set [LeCun et al., 2010] has 60, 000 training data points
and 10,000 test data points.

e The images are of size 28 by 28 pixels and hence can be represented
in R784,

e However, we will consider the problem of classification between the 3
and the 5 digits by Bayesian logistic regression.

a B B

Figure: MNIST 3 and 5 digits.
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Simulation example - MNIST classification

We use a i.i.d. Gaussian prior py with mean 0 and variance o2 = 0.001.
A more accurate estimator is the variance reduced stochastic gradient
([Johnson and Zhang, 2013]), also called control variate method in the
context of MCMC (see [Quiroz et al., 2018], [Baker et al., 2019]).

e We compare our discretization schemes on this MNIST example.

e Both bias and effective sample sizes are evaluated, test function is
chosen as the potential U.

e Ground truth is established via HMC with 40 million gradient

evaluations, each method is evaluated using 8 million steps (80 runs
with 100000 steps each).
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Bias, v = VM

Aleorithm h=2/vM h=1/vM h=1/(2¥M) | h=1/(4/M)
& y=vM y=vM vy=vM y=vM
EM 4.2(40.089) 1.5(+£0.13) 0.79(£0.18) 0.28(£0.23)
BBK 2.7(£0.061) 0.67(£0.099) 0.016(+£0.14) —0.18(£0.2)
SPV 123(£0.079) 32.1(40.091) 8.19(£0.13) 2.07(£0.18)
SVV 126(£0.097) 32.8(40.091) 8.17(£0.13) 2.03(£0.17)
BAOAB —0.043(£0.049) | —0.002(£0.058) | 0.13(40.086) | —0.055(+0.12)
BAOAB VRSG 0.47(40.043) 0.23(40.066) 0.035(£0.087) | 0.036(%0.12)
OBABO 2.7(40.056) 0.67(40.076) 0.22(£0.13) 0.17(£0.19)
rOABAO —2.6(40.062) —0.61(£0.094) | 0.025(+0.13) | —0.16(£0.19)
SES/EB 2.6(£0.072) 1.2(£0.094) 0.71(+£0.11) 0.2(£0.18)

Table: Bias for potential function, v = v M
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Gradient evaluation

fective sample, v =

Alsorithm h=2/vM h=1/VM | h=1/2VM) | h=1/(4V/M)
g y=VM v =vVM y=VvM v=vVM
EM 146(£0.7) | 221(+0.998) | 282(+0.822) | 327(+0.581)
BBK 85(10.535) | 148(£0.726) | 221(L0.969) | 285(£0.933)
SPV 86.7(20.554) | 148(£0.775) | 221(+£0.887) | 284(£0.992)
%Y 86.5(10.645) | 147(£0.801) | 222(X£0.916) | 283(£0.825)
BAOAB 44.3(10.304) | 88.7(£0.585) | 152(10.812) | 228(L£0.822)
BAOAB VRSG | 44.6(10.332) | 86.8(10.578) | 152(+£0.915) | 226(L0.934)
OBABO 68.6(10.491) | 140(£0.84) | 218(£0.942) | 282(L£0.809)
rOABAO 68.5(10.507) | 140(+0.692) | 219(+0.781) | 283(1+0.862)
SES/EB 87.4(£0.503) | 149(£0.663) | 220(L£0.831) | 284(%0.809)
Table: Gradient evaluations / ESS (potential function), v = VM
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@ v = O(y/m) is the best choice of friction in the continuous setting
[Cao et al., 2019].

Algorithm h=2/vM h=1/vM h=1/(2VM) h=1/(4/M)
y=+m y=+m y=+vm y=+vm
EM 6.4 -10*(£0.82) | 1.5-10%(40.72) | 1.1-103(%0.73) 4.9(£0.11)
BBK 2.8(£0.034) 0.68(+0.041) 0.1(£0.05) 0.0038(4-0.066)
SPV 0.72(+0.036) 0.14(+£0.043) 0.06(+0.054) —0.014(40.073)
SVV 3.5(+£0.036) 0.81(40.043) 0.26(+0.061) 0.05(+0.089)
BAOAB 0.03(4+0.038) | —0.011(40.049) | —0.046(£0.062) | 0.043(+0.074)
BAOAB VRSG 6.4(£0.04) 2.4(£0.051) 1.1(40.063) 0.55(+0.075)
OBABO 2.7(£0.032) 0.65(+0.041) 0.22(40.052) 0.11(£0.071)
rOABAO —1.7(+0.041) —0.55(+0.041) —0.2(£0.054) | —0.033(+0.081)
SES/EB 6.0 - 10%(£0.61) | 1.5-10%(£0.48) | 1.1-103(£0.59) 4.7(40.068)

Table: Bias for potential function, v = v/m
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Gradient evaluation

ective sample, v = 4/

Algorithm h=2/v/M h=1/vM | h=1/(2vM) | h=1/(4v/M)
y=vm y=vm y=vm y=vm
EM NA. N.A. N.A. 189(40.955)
BBK 15(£0.124) | 30.1(#0.233) | 57.5(%£0.352) | 108(£0.717)
SPV 15.1(£0.106) | 29.7(£0.209) | 57.4(+0.408) | 109(40.725)
SWV 15(£0.121) | 29.9(#+0.222) | 57.5(+0.341) | 108(+0.628)
BAOAB 18.8(+0.128) | 36.4(+£0.288) | 66.4(+0.461) | 116(+0.849)
BAOAB VRSG | 19.7(+0.169) | 36.4(£0.242) | 67.8(+0.447) | 114(+0.662)
OBABO 15(+£0.118) 30(£0.204) | 57.5(£0.471) | 108(£0.711)
rOABAO 16.5(£0.236) | 29.7(+£0.218) | 58.2(£0.356) | 109(=0.669)
SES/EB N.A. N.A. N.A. 108(+0.652)

Table: Gradient evaluations / ESS (potential function), v = v/m. N.A. indicates
that the method did not converge for the given stepsize.
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Future Work/Open questions

e Wasserstein bias estimates for BAOAB and other schemes.

e Can we get similar step-size restrictions with a more sophisticated
metric and coupling to deal with the non-convex case?
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