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EMPIRICAL BAYES



PROBLEM SETTING

Goal: Given some data y, infer some unobserved or latent variables x.

We use a probabilistic model pθ(x, y) relating x and y, that is defined
in terms of a vector of parameters θ:

pθ(x, y) ≥ 0 ∀θ ∈ Θ, x ∈ X , y ∈ Y,∫
X

∫
Y
pθ(x, y)dxdy = 1 ∀θ ∈ Θ.

Simplification: x and θ take values in Euclidean spaces.

Example: Toy hierarchical model
Data y = (y1, . . . , yD) ∈ RD and latent variables x = (x1, . . . , xD) ∈ RD,
where yd is a noisy observation of xd. Model defined by

Yd ∼ N (Xd, 1), Xd ∼ N (θ, 1), ∀d = 1, . . . ,D,

⇒ pθ(x, y) :=
D∏

d=1

1
2π exp

(
− (xd − θ)2

2 − (yd − xd)2
2

)
.
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GENERATOR NETWORKS FOR UNSUPERVISED LEARNING

Many supervised and unsupervised learning techniques involve
latent variable models.

Example: Generator networks

Non-linear extensions of factor analysis.

Assume that each point in a dataset is generated by:

(A) sampling latent variables from an isotropic Gaussian prior,
(B) mapping them through a neural network,
(C) and adding Gaussian noise.

We consider their use for image datasets (MNIST and CelebA), where

• observed variables y: 1024 pixels per image,
• latent variables x: 64 per image,
• parameters θ: the network’s parameters (dimension ≈ 350, 000).
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EMPIRICAL BAYES

Problem: Given data y, use model pθ(x, y) to infer latent variables x.

We approach it using the empirical Bayes (EB) paradigm:

(EB1) we search for parameters θ∗ that explain the data y well;
(EB2) we use θ∗ to infer, and quantify the uncertainty in, x.

More technically,

(EB1) we find a θ∗ maximizing the marginal likelihood,

pθ(y) :=
∫

pθ(x, y)dx;

(EB2) we obtain the corresponding posterior distribution,

pθ∗(x|y) :=
pθ∗(x, y)
pθ∗(y)

.

Maximummarginal likelihood: In some cases, our main interest is θ∗.
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EXPECTATION MAXIMIZATION



EXPECTATION MAXIMIZATION

A well-known method for solving (EB1,2) is the expectation
maximization (EM) algorithm: starting from (θ0,q0), alternate

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

where ℓ(θ, x) := log(pθ(x, y)) denotes the log-likelihood and Θ the
parameter space.

Under general conditions,

θk → θ∗ and qk → pθ∗(·|y) as k → ∞,

where θ∗ is a stationary point of θ 7→ pθ(y) (i.e. ∇θpθ∗(y) = 0).

Issue: The (E,M) steps are intractable for many models.

Typical solutions:
• Approximate (E) using Monte Carlo.
• Approximate (M) using numerical optimization.

4



EXPECTATION MAXIMIZATION

A well-known method for solving (EB1,2) is the expectation
maximization (EM) algorithm: starting from (θ0,q0), alternate

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

where ℓ(θ, x) := log(pθ(x, y)) denotes the log-likelihood and Θ the
parameter space.

Under general conditions,

θk → θ∗ and qk → pθ∗(·|y) as k → ∞,

where θ∗ is a stationary point of θ 7→ pθ(y) (i.e. ∇θpθ∗(y) = 0).

Issue: The (E,M) steps are intractable for many models.

Typical solutions:
• Approximate (E) using Monte Carlo.
• Approximate (M) using numerical optimization.

4



EM AS COORDINATE DESCENT

EM is a well-known optimization algorithm applied to the free energy:

F(θ,q) :=
∫

log

(
q(x)

pθ(x, y)

)
q(x)dx ∀θ ∈ Θ, q ∈ P(X ),

where P(X ) := {probability distributions on the latent space X}.

Theorem (Neal and Hinton [1998])
pθ(y) has a maximum at θ iff F has a minimum at (θ,pθ(·|y)).

Proposition (Neal and Hinton [1998])
For any θ in Θ, the posterior pθ(·|y) minimizes q 7→ F(θ,q).

Hence, EM is coordinate descent applied to F:

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

equals

(E) qk+1 := argminq∈P(X ) F(θk,q), (M) θk+1 := argminθ∈Θ F(θ,qk+1).
5



EM AS COORDINATE DESCENT

Starting from (θ0,q0), alternate

(E) qk+1 := argminq∈P(X ) F(θk,q), (M) θk+1 := argminθ∈Θ F(θ,qk+1).
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JOINT UPDATES

Issue: The (E,M) steps are intractable for many models.

Possible solution: Apply a different optimization algorithm to F!

Observations
• Coordinate descent often outperforms first order methods.
• Unclear whether this is still the case when the coordinate

descent updates can only be computed approximately.
• Methods with joint rather than coordinate-wise updates?

From [Neal and Hinton, 1998]:
“... justifying... as well as algorithms in which the maximiza-
tion is done with respect to q and θ simultaneously.”

This idea has been taken up enthusiastically in the VI literature
where P(X ) is restricted to tractable parametric subset (qϕ)ϕ∈Φ.

Question: Can we directly optimize over Θ× P(X ) using, for
example, gradient descent (GD)?
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PARTICLE GRADIENT DESCENT



GRADIENT DESCENT FOR f

Recall the GD algorithm for optimizing a function f : Rn → R,

zk+1 = zk − h∇f(zk) ∀k = 0, 1, . . . ,

where h > 0 denotes the step size.
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GRADIENT FLOW FOR f

GD is the Euler discretization of the gradient flow:

żt = −∇f(zt) ∀t ≥ 0.
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GRADIENT FLOW FOR F

We start with a gradient flow,

(θ̇t, q̇t) = −∇F(θt,qt) ∀t ≥ 0,

and discretize to obtain a practical algorithm.

Defining a notion of gradient for a functional on Θ×P(X ) requires a
metric d. For practical reasons, we use

d((θ1,q1), (θ2,q2)) = d2(θ1, θ2) + dW2(q1,q2),

with

• d2 denoting the Euclidean metric on Θ and
• dW2 the Wasserstein-2 metric on P(X ).

In which case, ∇F(θ,q) = (∇θF(θ,q),∇qF(θ,q)), where

∇θF(θ,q) = −
∫

∇θℓ(θ, x)q(x)dx,

∇qF(θ,q) = ∇x ·
[
q∇x log

(
pθ(·, y)

q

)]
.
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GRADIENT FLOW FOR F

The corresponding gradient flow (θ̇t, q̇t) = −∇F(θt,qt) reads

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = ∇x ·

[
qt∇x log

(
qt

pθt(·, y)

)]
.

Sanity checks [Kuntz et al., 2023]

Theorem (F’s stationary points relate to pθ(y)’s)
∇F(θ,q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Theorem (Exponential convergence under strong concavity)
If the log likelihood ℓ is strongly concave, for some λ > 0

∇2ℓ(θ, x) � −λIDx+Dθ
∀(θ, x) ∈ Θ×X ,

then the marginal likelihood has a unique maximizer θ∗ and

||θt − θ∗|| = O(e−λt) and ||qt − pθ∗(·|y)||L1 = O(e−λt).
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PARTICLE GRADIENT DESCENT

Discretizing the gradient flow, we obtain particle gradient descent:

(1) Choose the step size h > 0 and particle number N > 0, and run

Θk = Θk−1 +
h
N

N∑
n=1

∇θℓ(Θk−1, Xnk−1), ∀k ∈ [K] := {1, . . . , K},

Xnk = Xnk + h∇xℓ(θk−1, Xnk−1) +
√
2hWn

k−1, ∀n ∈ [N], k ∈ [K],

where (Wn
k)k∈[K−1],n∈[N] denote independent standard normal r.v.s., in

which case

Θk ≈ θkh,
1
N

N∑
n=1

δXnk ≈ qkh, ∀k > 0.

(2) Estimate a stationary point θ∗ of the marginal likelihood
θ 7→ pθ(y) and its corresponding posterior pθ∗(·|y) using

θ∗ ≈ ΘK, pθ∗(·|y) ≈
1
N

N∑
n=1

δXnK . 12



PARTICLE GRADIENT DESCENT

Particle gradient descent:

• runs N > 0 ULA chains in tandem with an SGD-like recursion;
• avoids accept-reject steps;
• only requires evaluating gradients of ℓ(θ, x) = log(pθ(x, y));
• its cost is O(N[eval. cost of ∇ℓ]);
• computations can be vectorized across N;
• in big-data settings, we replace ∇ℓ with estimates thereof;
• we improve performance by adapting step sizes.

In short, PGD trains large latent variable models without resorting to
variational inference.

Example: Generator networks
We

• fit the model using PGD,
• 10, 000 (MNIST) and 40, 000 (CelebA) training images,
• and a Google Colab subscription.
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IMAGE SYNTHESIS

CelebAMNIST

Figure 1: Synthesized images obtained using the generator trained with PGD.
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IMAGE RECONSTRUCTION

CelebAMNIST

Original Masked Inpainted Original Masked Inpainted

Figure 2: Images reconstructed using the generator trained with PGD.
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THANK YOU FOR YOU TIME.
QUESTIONS?
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THREE INTRACTABILITIES

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (1)

Three intractabilities:

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solution: (1) is the a McKean-Vlasov Fokker-Planck equation
satisfied by the law of the following McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
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TWO INTRACTABILITIES

McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

Two intractabilities:

(1) The continuous time axis.
(2) The integral over X .

Solution: Generate N > 0 particles X1t , . . . , XNt with law qt by solving

dXnt = ∇xℓ(θt, Xnt )dt+
√
2dWn

t ∀n ∈ [N] := {1, . . . ,N},

with W1, . . . ,WN denoting N independent Brownian motions, and use

qt ≈
1
N

N∑
n=1

δXnt ⇒
∫

∇θℓ(θt, x)qt(x)dx ≈
1
N

N∑
n=1

∇θℓ(θt, Xnt ).



ONE INTRACTABILITY

SDE:

dΘt =

[
1
N

N∑
n=1

∇θℓ(Θt, Xnt )
]
dt,

dXnt = ∇xℓ(Θt, Xnt )dt+
√
2dWn

t ∀n ∈ [N].

One intractability: The continuous time axis.

Solution: Discretize using Euler-Maruyama with step size h > 0,

Θk+1 = θk +
h
N

N∑
n=1

∇θℓ(Θk, Xnk), ∀k ∈ [K],

Xnk+1 = Xnk + h∇xℓ(Θk, Xnk) +
√
2hWn

k ∀n ∈ [N], k ∈ [K],

where (Wn
k)k∈[K−1],n∈[N] denote independent standard normal r.v.s.



VARIATIONAL INFERENCE

Choose a tractable parametric family Q := (qϕ)ϕ∈Φ ⊆ P(X ) and solve

(θ∗, ϕ∗) = argmin
(θ,ϕ)∈Θ×Φ

F(θ,qϕ)

using an appropriate optimization algorithm.

General idea: If Q is rich, then (θ∗,qϕ∗) will be close to an optimum
of (θ,q) 7→ F(θ,q) if (θ∗, ϕ∗) is an optimum of (θ, ϕ) 7→ F(θ,qϕ).

Issues

• How rich does Q need to be?
• We are interested in optimizing over (θ,qϕ) in Θ×Q rather than
(θ, ϕ) in Θ× Φ. Hence, naively applying an optimization
algorithm to (θ, ϕ) 7→ F(θ,qϕ) can lead to trouble.



PARTICLE GRADIENT DESCENT: BEHAVIOUR

Given the analogy between PGD and (stochastic) gradient descent,
we expect that:

(C1) If the step size h is set too large, PGD will be unstable.
(C2) Otherwise, after a transient phase,

θk ≈ θ∗, qk ≈ pθ∗(·|y), lim
k→∞

θ̄k = θ∗, lim
k→∞

q̄k = pθ∗(·|y),

for some stationary point θ∗ of pθ(y), where

θ̄K :=
1
K

K∑
k=1

θk, q̄K :=
1
K

K∑
k=1

qk, with qk :=
1
N

N∑
n=1

δXnk .

(C3) Small hs lead to long transient phases but low estimator
variance in the stationary phase.

Asymptotic bias: (θ̄k, q̄k) does not converge exactly to (θ∗,pθ∗(·|y)),
but instead to a point in its vicinity.

• The bias vanishes as N → ∞ and h → 0.
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TOY HIERARCHICAL MODEL

Recall our starting example:

Yd ∼ N (Xd, 1), Xd ∼ N (θ, 1), ∀d = 1, . . . ,D,

pθ(x, y) :=
D∏

d=1

1
2π exp

(
− (xd − θ)2

2 − (yd − xd)2
2

)
.
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Figure 3: Parameter estimates with D = 100 latent variables and N = 10
particles. (LHS) PGD, PQN, PMGD, and EM estimates with well chosen h and
averaging over k once the estimates reach stationarity. (RHS) First 30 steps.



BENCHMARK: SOUL ALGORITHM [DE BORTOLI ET AL., 2021]

Alternating coordinate-wise cousin of PGD:

• Approximates the (E) step by running the unadjusted Langevin
algorithm (ULA) targetting the current posterior:

pθk(·|y) ≈
1
N

N∑
n=1

δXnk

where

X0k = XNk−1, Xn+1
k = Xnk + h∇xℓ(θk, Xnk) +

√
2hWn

k ∀n ∈ [N− 1].

• Approximates the (M) step using a stochastic gradient step:

θk+1 = θk +
h
N

N∑
n=1

∇θℓ(θk, Xnk).



MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

We consider

• a scaled-down version of the MNIST classification task,
• involving 1000 data points with labels 4, 9 and an 80/20

training/testing split.

We apply

• a two layer Bayesian neural network,
• with isotropic Gaussian priors on the network’s weights.
• Latent variables: the network’s weights (dimension ≈ 30000).
• Parameters: the prior variances (dimension 2).



MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

Predictive performance

Table 1: Test errors achieved using the final particle cloud X1:N500 and
corresponding computation times (averaged over 10 replicates).

N = 1 N = 10 N = 100

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

PGD 7.45 ± 2.03 4.10 ± 0.26 3.20 ± 1.12 10.4 ± 1.2 2.45 ± 0.99 76.6 ± 0.4
PQN 7.45 ± 1.60 4.12 ± 0.21 3.45 ± 1.04 10.0 ± 0.2 2.34 ± 0.81 74.0 ± 0.3
PMGD 7.24 ± 1.75 3.27 ± 0.13 3.75 ± 1.38 9.12 ± 0.2 2.45 ± 0.81 72.1 ± 0.5
SOUL 6.25 ± 1.54 5.02 ± 0.20 7.25 ± 1.38 36.5 ± 0.1 6.85 ± 1.42 364.0 ± 5.3



MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

Gap in performance might be due to:

• SOUL particles are sequentially correlated,

Xn+1
k = Xnk + h∇xℓ(θk, Xnk) +

√
2hWn

k ∀n ∈ [N− 1].
• ⇒ its posterior approximations are narrower than PGD’s.
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Figure 4: KDE of a randomly-chosen entry of the final cloud X1:100500 .



GENERATOR NETWORKS FOR IMAGE SYNTHESIS AND INPAINTING

We consider

• MNIST and CelebA image datasets
• with 10, 000 (MNIST) and 40, 000 (CelebA) training images.

We apply a generator model. It assumes that the images are
produced by:

(A) sampling latent variables from an isotropic Gaussian prior,
(B) mapping them through a convolutional neural network,
(C) and adding Gaussian noise.

• Latent variables: 64 per image (totals of 640, 000 and 2, 560, 000)
• Parameters: the network’s parameters (dimension ≈ 350, 000).

We fit the model using maximum likelihood and PGD (tweaked).



IMAGE SYNTHESIS

CelebAMNIST

Figure 5: Synthesized images obtained using the generator trained with PGD.



IMAGE RECONSTRUCTION

CelebAMNIST

Original Masked Inpainted Original Masked Inpainted

Figure 6: Reconstructed images obtained using the generator trained with
PGD.



SUMMARY

Advantages
• Applies to broad classes of models.
• Straightforward to implement and tune.
• Recycles posterior approximations.
• Scalable:

• No accept-reject steps.
• Low cost: O(KN[eval. cost of (∇θℓ,∇xℓ)]).
• Easy to parallelize/vectorize computations across particles.

Disadvantages
• Separate timescales: often, |[∇θℓ(θ, x)]i| � |[∇xℓ(θ, x)]j| for all i, j.
Solutions: Hack, particle quasi-Newton, particle marginal GD.

• Biased.
• Only returns stationary points.
• Requires Euclidean parameter and latent spaces.
• Requires differentiable densities.



OPEN DIRECTIONS

(A) Theoretical analysis.
(B) Variants:

• Big data versions with stochastic gradients à la SGD/SGLD.
• Decreasing h and/or increasing N with k:

• Robbins-Monro type conditions.
• Adaptive strategies à la Adagrad and its variants.
• Line searches.

• Better approximations to the gradient flow.
• Versions for Riemannian manifolds.

(C) Other optimization-inspired methods:
• Different geometries:

• Stein (leading to an extension of SVGD).
• Wasserstein-Kalman (leading to an extension of EKS).
• Better approximations to Newton’s method.

• Non-gradient-descent methods:
• Nesterov acceleration/momentum/underdamped Langevin.
• Proximal algorithms for non-differentiable models.
• Mirror descent.

(D) Other particle-based methods updating θ and q ‘jointly’:
• Metropolis-Hastings Algorithms.
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GENERATOR NETWORKS FOR IMAGE SYNTHESIS AND INPAINTING

Given a dataset of 32× 32 images y1:M := (ym)Mm=1 ⊆ R32×32.

Model which assumes that each image ym is independently
generated by:

1. drawing a (64-dimensional) latent variable xm from N (0, I);
2. mapping xm to the image space via a generator fθ : R64 → R32×32;
3. adding noise: ym = fθ(xm) + ϵm where (ϵm)Mm=1 is a sequence of

i.i.d. R.V.s with law N (0, 0.012I).

In full, the model’s density is given by

pθ(x1:M, y1:M) =
M∏

m=1
N (ym|fθ(xm), 0.012I)N (xm|0, I);

and

• fθ is a convolutional neural net with ≈ 350, 000 parameters,
• there are 640, 000–2, 560, 000 latent variables in total,
• we learn θ by maximizing the marginal likelihood pθ(y1:M) with

PGD (and a few tweaks).



LASALLE’S INVARIANCE PRINCIPLE

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
.

Note that

• dF(θt,qt)
dt = I(θt,qt) where

I(θ,q) :=
∣∣∣∣∫ ∇θℓ(θ, x)q(x)dx

∣∣∣∣2 + ∫ ∣∣∣∣∣∣∇x log
(

pθ(x,y)
q(x)

)∣∣∣∣∣∣2 q(x)dx.
• I ≥ 0. Hence, t 7→ F(θt,qt) is non-decreasing.
• Moreover, I(θ,q) = 0 iff ∇θpθ(y) = 0 and q = pθ(·|y).
• ⇒ if pθ(x, y) is s.t. F’s super-level sets are appropriately compact,

an extension of LaSalle’s Principle should yield that

(θt,qt) → {(θ∗,pθ(·|y)) : ∇θpθ(y) = 0} as t → ∞.

Assumption: the marginal likelihood’s super-level sets are bounded.

Because log(pθ(y)) = F(θ,pθ(·|y)),

{θ ∈ Θ : pθ(y) ≥ el} ⊆ {θ : F(θ,q) ≥ l for some q}.



THE BIAS

Two sources
(B1) h > 0. Discretizations of the Langevin diffusion do not preserve

stationary distributions, c.f. mean field limits in App.G.
(B2) N < ∞. Finite populations, c.f. continuum limits in App.H.

B1 can be mitigated by decreasing h and B2 by increasing N:
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Figure 7: Toy hierarchical model, bias. PMGD posterior variance estimates
with D = 1 using the time-averaged posterior approximation q̄K and no
burn-in (kb = 0), as a function of K.



TIME-SCALE SEPARATION AND A HACK

For the toy hierarchical model,

∇θℓ(θ, x) =
D∑

d=1

[xd − θ], [∇xℓ(θ, x)]d = yd − xd − (xd − θ) ∀d,

⇒ |∇θℓ(θ, x)| � |[∇xℓ(θ, x)]d| ∀d.

This causes θk to evolve in a faster time-scale than the Xnks,

θk+1 = θk +
h
N

N∑
n=1

D∑
d=1

[Xnd,k − θk],

Xnd,k+1 = Xnd,k + h[yd + θk − 2Xnd,k] +
√
2hWn

d,k ∀d,n,

and makes PGD ‘ill-conditioned’.

It is straightforward to mitigate issue with a hack.
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D∑

d=1

[xd − θ], [∇xℓ(θ, x)]d = yd − xd − (xd − θ) ∀d,

⇒ |∇θℓ(θ, x)| � |[∇xℓ(θ, x)]d| ∀d.

This causes θk to evolve in a faster time-scale than the Xnks,

θk+1 = θk +
h
DN

N∑
n=1

D∑
d=1

[Xnd,k − θk] = θk + h
[
X̄k − θk

]
,

Xnd,k+1 = Xnd,k + h[yd + θk − 2Xnd,k] +
√
2hWn

d,k ∀d,n,

and makes PGD ‘ill-conditioned’, where X̄k := 1
DN

∑N
n=1

∑D
d=1 Xnd,k.

It is straightforward to mitigate issue with a hack.



PMGD

For some models the (M) step is tractable:

• For each q, θ 7→ F(θ,q) has a unique stationary point θ∗(q).
• We can evaluate θ∗(x1:N) := θ∗(q) whenever q = N−1 ∑N

n=1 δxn for
some x1:N = (x1, . . . , xN) in X N.

Consider the ‘marginal objective’: F∗(q) := F(θ∗(q),q) for all q.

Theorem (Kuntz et al. [2022])
θ = θ∗(q) and ∇F∗(q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Idea: Using gradient descent, find qminimizing F∗ and evaluate θ∗(q).
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PARTICLE MARGINAL GRADIENT DESCENT

Idea: Using gradient descent, find qminimizing F∗ and evaluate θ∗(q).



PMGD

Idea: Using gradient descent, find q minimizing F∗ and evaluate
θ∗(q). Using the Wasserstein-2 metric on P(X ) leads to

∇F∗(q) = ∇x ·
[
q∇x log

(pθ∗(q)(·, y)
q

)]
.

Approximating the corresponding gradient-flow similarly as for PGD
then yields the particle marginal gradient descent (PMGD) algorithm:

Xnk+1 = Xnk + h∇xℓ(θk, Xnk) +
√
2hWn

k ∀n ∈ [N],

where

θk := θ∗(qk) with qk :=
1
N

N∑
n=1

δXnk .



NEWTON’S METHOD

Gradient descent works badly if f is ill-conditioned.
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NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).



NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).



NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).



PARTICLE QUASI-NEWTON

(A) Using a 2nd order expansion of F, identify an analogous inner
product and the corresponding gradient.

(B) Approximate until we get a tractable gradient.
(C) Define the corresponding gradient flow.
(D) Approximate the flow similarly as for PGD and PMGD.

Particle Quasi-Newton (PQN) Algorithm:

θk+1 = θk + h
[ N∑
n=1

Hθ(Xnk)
]−1 N∑

n=1
∇θℓ(θk, Xnk), ∀k ∈ [K],

Xnk+1 = Xnk + h∇xℓ(θk, Xnk) +
√
2hWn

k ∀n ∈ [N], k ∈ [K].



DISCRETIZING THE FLOW

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (2)

Intractabilities

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solutions

(C) Eq. (2) is satisfied by the law of a McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
(B) Generate N i.i.d. copies X1t , . . . , XNt of Xt so that qt ≈ 1

N
∑N

n=1 δXnt .
(A) Discretize using Euler-Maruyama.
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