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Self-normalised importance sampling (SNIS)

▶ We aim to sample from π(dx)∝ w(x)λ(dx) (the target) on some state
space (X,X ), where w is some positive weight function and λ some
instrumental distribution (the proposal) on (X,X ).

▶ The SNIS estimator [Gew89] of πh = ∫ h(x)π(dx), h being a π-integrable
objective function, is given by

ΠMh(ξ) =
M

∑
i=1

w(ξi)
∑M

j=1 w(ξj)
h(ξi),

where ξ = (ξ1
, . . . , ξ

M) ∼ λ�M
.
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Bias and MSE of SNIS

▶ As shown in [Aga+17], for every M and h such that ∥h∥∞ ≤ 1,

∣E [ΠMh(ξ)] − πh∣ ≤ (12/M)κ[π, λ] (bias)

E [{ΠMh(ξ) − πh}2] ≤ (4/M)κ[π, λ]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

MSEsnis
M

(MSE)

where κ[π, λ] ≔ λ(w2)/λ2(w).
▶ In this talk, we

– show how a bias-reduced modification of SNIS can be obtained at the cost of
a controllable increase of MSE by shuffling randomly the samples ξ.

– furnish the same with rigorous error bounds.
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Prelude: iterated sampling importance resampling (i-SIR)

▶ The i-SIR algorithm [Tje04] (see also [ADH10]) generates a Markov chain
(υt)t on X as follows: given υt ,

draw ι uniformly over {1, . . . ,N};
set ξ

ι
t+1 ← υt ;

for i ∈ {1, . . . ,N} \ ι do
draw ξ

i
t+1 ∼ λ;

end

set κ← i with probability ∝ w(ξit+1);
set υt+1 ← ξ

κ
t+1;

▶ The chain (υt)t can be shown to allow π as a stationary distribution.
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i-SIR as a Gibbs sampler

▶ Note that i-SIR can be described by the two-stage procedure

(υt , ξt)
ΛN

−−−−−−→ (υt , ξt+1)
ΠN

−−−−−−→ (υt+1, ξt+1),

where ΛN(υt , dx) ≔ 1
N
∑N

i=1 δυt(dx
i)∏j≠i λ(dx

j).

▶ Now, there exists a probability distribution λN on XN
such that

(i) ϕN(d(y , x)) ≔ π(dy)ΛN(y , dx) = λN(dx)ΠN(x , dy) (dual representation)

(ii) ∫ ΠNh(x)ϕN(dx) = πh. (unbiasedness)

▶ Thus, i-SIR can be embedded into a systematic-scan Gibbs sampler
targeting the distribution ϕN , under which ΠNh(ξ) is unbiased.
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Bias-reduced SNIS (BR-SNIS)

▶ Thus, let us consider an estimator formed as an average across (ΠNh(ξt))t .
▶ Thus, being ready to generate M = (N − 1)m samples ξ from λ, run i-SIR

for m iterations, producing mini-batches (ξt)mt=1, and return

ΠN,(m0,m)h(ξ) ≔ (m −m0)−1
m

∑
t=m0+1

ΠNh(ξt),

where m0 < m is some burn-in.

▶ Wrapper requiring only random shuffling of ξ!

▶ Similar ideas appear in, e.g., [Tje04; ADH10].
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Convergence of BR-SNIS

▶ Recall that ΠN,(m0,m)h(ξ) = (m −m0)−1
m

∑
t=m0+1

ΠNh(ξt).

▶ letting M = (N − 1)m and φ ≔ (m −m0)/m, yields Mφ effective samples.

Theorem ([Car+22])
Assume that ∥w∥∞ <∞. Then for all N ≥ 2 there exist κN ∈ (0, 1), ζbias

> 0,
and ζ

hpd
> 0 such that for every initial distribution µ, h such that ∥h∥∞ ≤ 1,

and m0 < m,

(i) ∣Eµ [ΠN,(m0,m)h(ξ)] − πh∣ ≤ ζbiasκm0

N /(Mφ)
(ii) Eµ [{ΠN,(m0,m)h(ξ) − πh}2] ≤ MSE

snis
Mφ + o{1/(Mφ)}

(iii) for every δ ∈ (0, 1), ∣ΠN,(m0,m)h(ξ) − πh∣ ≤ ζhpd{ln(4/δ)}1/2/(Mφ)1/2
with

probability at least 1 − δ.
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Variance reduction by sample permutation

▶ Increasing m0 reduces bias but increases MSE; however, to control the
latter we may proceed as follows:

for b = 1→ B do

generate a random permutation ξ
(b)

of ξ;

run i-SIR on ξ
(b)

;

compute the BR-SNIS estimator ΠN,(m0,m)h(ξ(b));

end

return Π
B
N,(m0,m)h(ξ) ≔ B

−1 ∑B
b=1 ΠN,(m0,m)h(ξ(b));

▶ Here Π
B
N,(m0,m)h(ξ) and ΠN,(m0,m)h(ξ) have the same bias.

▶ Letting, e.g., m0 = m − 1 and B = m entails an O(1/M) variance.

10 / 24



Gaussian mixture model
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Figure: Comparison of bias (left panel) and MSE (right panel) of BR-SNIS and SNIS for
the fixed budget M = 16,384, mini-batch sizes N ∈ {129, 257, 513}, m0 = m − 1, and
B = m. Here π is a mixture of two 7-dimensional Gaussian distributions, λ is a
Student’s t-distribution (ν = 3), and h = 1A − 1B .
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Application to Bayesian logistic regression

▶ Let D ≔ (x i , yi)ni=1 be covariates in Rd
and binary responses in {−1, 1}.

▶ Let pθ(yi ∣ x i) ≔ 1/{1 + exp(−x⊤i θyi)} be the likelihood of yi given x i and

π0 a Gaussian prior on Θ ⊆ Rd
.

▶ In this case, the posterior is

π(dθ ∣ D)∝ exp(`n(θ))π0(dθ),

where `n(θ) = ∑n
i=1 ln pθ(yi ∣ x i).

▶ In this setting, we use BR-SNIS to estimate

E[θj ∣ D] = ∫ θj π(dθj ∣ D).
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Application to Bayesian logistic regression (cont’d)
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Figure: Estimated biases of approximations Bayes’s estimator of θj obtained with
BR-SNIS (�) and SNIS (�) for different budgets M and different data sets HFCR =
Heart Failure Clinical Records (d = 13, n = 299), WDBC = Wisconsin Diagnostic Breast
Cancer (d = 30, n = 569), and CT = Cover Type (d = 55, n = 40,000).
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General state-space models (SSM)

Xk−1

Yk−1

Xk

Yk

Xk+1

Yk+1

Q(Xk−1,⋅) Q(Xk ,⋅)

g(Xk−1,⋅) g(Xk ,⋅) g(Xk+1,⋅)

▶ An SSM is a partially observed Markov chain (Xk ,Yk)k on X × Y
characterised by (i) a state transition kernel Q (with density q) , (ii) an
emission density g , and (iii) an initial distribution µ.
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Additive smoothing in SSM

▶ Our aim is to approximate π0∶nh = Eµ[h(X0∶n) ∣ Y0∶n−1], where

– π0∶n(dx0∶n)∝ µ(dx0)∏n−1
k=0 g(xk , yk)Q(xk , dxk+1),

– h(x0∶n) = ∑n−1
k=0 hk(xk , xk+1).

▶ This can be done by an analogous two-stage procedure

(υt , ξt)
ΛN

−−−−−−→ (υt , ξt+1)
ΠN

−−−−−−→ (υt+1, ξt+1),

where, in this case,

– υt = (υ0, . . . , υn)t is a random path in Xn+1

– ξt contains N paths and associated real-valued statistics

((ξ0∣n, . . . , ξn∣n)i , βi
n)t such that β̄t ≔

1
N
∑N

i=1 β
i
n,t approximates π0∶nh.
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PaRISian particle Gibbs (PPG)

▶ The operation ξ ∼ ΛN(υ, ⋅) combines conditional SMC [ADH10] and the
particle-based, rapid incremental smoother (PaRIS) [OW17] by

– evolving a particle cloud (ξik)Ni=1 conditionally on υ = (υ0, . . . , υn).
– letting recursively, for k ∈ {0, . . . , n − 1},

β
i
k+1 ←

1

J

J

∑
j=1

(βI
j

k + hk(ξI
j

k , ξ
i
k+1)) ,

(ξ0∣k+1, . . . , ξk+1∣k+1)i ← ((ξ0∣k , . . . , ξk∣k)I
1

, ξ
i
k+1),

where I
j
∼ cat((g(ξ`k , yk)q(ξ`k , ξik+1))N`=1) and 2 ≤ J ≪ N.

▶ The operation υ ∼ ΠN(ξ, ⋅) resamples uniformly among the paths
(ξ0∣n, . . . , ξn∣n)

i
in ξ.
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Convergence of PPG

▶ As before, define Π(m0,m),Nh(ξ) ≔ (m −m0)−1∑m
t=m0+1 β̄t .

Theorem ([CMO23])
Under certain strong mixing assumptions there exist, for all N ≥ 2 and J ≥ 2,
κN ∈ (0, 1), ζbias

n > 0, and ζ
mse

n > 0 such that for every µ, h, and m0 < m,

(i) ∣Eµ [Π(m0,m),Nh(ξ)] − π0∶nh∣ ≤ ςbiasn κ
m0

N (
n−1

∑
k=0

∥h̃k∥∞) /{(1 − κN)Mφ}

(ii) Eµ [{Π(m0,m),Nh(ξ) − π0∶nh}2] ≤ ςmse
n (

n−1

∑
k=0

∥h̃k∥∞)
2

/{(1 − κN)Mφ} + o{1/(Mφ)}.
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Application to standard SSM

Figure: PaRIS and PPG bias dispersions for a linear Gaussian (left panel) and a
stochastic volatility (right panel) model as a function of the mini-batch size N for fixed
computational budgets M = Nm of 5,000 (linear Gaussian) and 1,000 (stochastic

volatility) and with m0 = ⌊2
−1
m⌋ burn-in steps.
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PPG-based score ascent

▶ We wish to estimate some model parameter θ ∈ Θ given data y0∶n.

▶ In order to find a zero of the score sn(θ) = π0∶n,θhθ, where hθ(x0∶n) is the

gradient of θ ↦ ∑n−1
k=0 log{gθ(xk , yk)qθ(xk , xk+1)}, we run L iterations of

θ`+1 = θ` + γ`+1Π(m0,m),Nhθ`(ξ).
Theorem ([Car+23])

Under certain assumptions there exist aN,n > 0 and bN,n > 0 such that for all L,

E[∥sn(θλ)∥2] ≤
cN,n + dN,n ∑L

`=0 γ
2
`

∑L
`=1 γ`

,

with λ ∼ cat((γ`)L`=0). Letting γ` ∝ 1/
√
` yields E[∥sn(θλ)∥2] = O(log L/

√
L).
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PPG-based score ascent (cont’d)
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Figure: Plot of L2 distances to the MLE estimator of the keofficients of a linear Gaussian
SSM as a function of L for different configurations of the PPG. Here n = 999. Solid lines
and shaded regions correspond to means and approximate confidence intervals obtained
with 25 replicates.
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Conclusions

▶ Calculating Π
B
N,(m0,m)h(ξ) requires only computationally cheap random

shuffling of (ξi ,w(ξi), h(ξi))Mi=1 (the generation of which constitutes the
computational bottleneck of SNIS).

▶ BR-SNIS can be applied off-the-shelf whenever SNIS is to be used.

▶ A similar bias-reduced estimator, PPG, can be obtained for SSM using the
PaRIS estimator.

▶ The bias reduction provided by the PPG is obtained at the cost of an
increase of MSE that cannot be easily controlled.
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