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This talk

Generalities on random algorithms for quadrature and best possible
rates;

Two new classes of estimators with optimal rate.
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Generalities on random quadrature

Section 1

Generalities on random quadrature
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Generalities on random quadrature

Formal definition of the considered problem

We wish to obtain the best possible approximation of

I(f ) :=
∫

[0,1]s
f (u)du

based on n evaluations of function f : [0, 1]s → R.

For a random algorithm, our optimality criterion is simply the RMSE
(root mean square error), i.e. the root square of:

E
[(
Î(f )− I(f )

)2]

We focus on unbiased estimation, E
[
Î(f )

]
= I(f ). Then the RMSE

equals the square root of the variance.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 5 / 38



Generalities on random quadrature

Formal definition of the considered problem

We wish to obtain the best possible approximation of

I(f ) :=
∫

[0,1]s
f (u)du

based on n evaluations of function f : [0, 1]s → R.

For a random algorithm, our optimality criterion is simply the RMSE
(root mean square error), i.e. the root square of:

E
[(
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Generalities on random quadrature

Advantages of unbiased algorithms

It is possible to generate k independent unbiased estimates

in parallel;

to use them assess the numerical error, through the empirical variance
σ̂2;

and compute their average (the variance of which is ≈ σ̂2/k)

Moreover, random estimates tends to have better error rates than
deterministic ones, see below.
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Generalities on random quadrature

Most common unbiased algorithm: Monte Carlo

Î(f ) = 1
n

n∑
i=1

f (Ui ), Ui ∼ U([0, 1]s)

Unbiased, with RMSE O(n−1/2).

Minimal assumption on f :
∫

f 2 <∞.

We can construct estimators with better rates if we focus on a smaller
class of functions.

Note: I will not talk about (randomised) quasi-Monte Carlo today.
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Generalities on random quadrature

Optimality results

Assuming f ∈ Cr ([0, 1]s), the best RMSE one may achieve for a random
algorithm is (Bakhvalov, 1959)

O(n−1/2−r/s)

while the best (absolute) error for a deterministic algorithm is

O(n−r/s).

Statement above is slightly sloppy; for something more formal see
e.g. Novak (2015).

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 8 / 38



Generalities on random quadrature

Optimality results

Assuming f ∈ Cr ([0, 1]s), the best RMSE one may achieve for a random
algorithm is (Bakhvalov, 1959)

O(n−1/2−r/s)

while the best (absolute) error for a deterministic algorithm is

O(n−r/s).

Statement above is slightly sloppy; for something more formal see
e.g. Novak (2015).

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 8 / 38



Generalities on random quadrature

Connexion with function approximation

Optimal function approximation: based on n evaluations of f , provide
approximation fn such that ‖f − fn‖∞ = O(n−r/s).

The following estimate (based on 2n evaluations of f )

Î(f ) = I(fn) + 1
n

n∑
i=1
{f − fn}(Ui ), Ui ∼ U ([0, 1]s) .

is then unbiased and with optimal rate, since:

Var
[
Î(f )

]
= 1

n2
n∑

i=1
Var [{f − fn}(Ui )]

= O(n−1−2r/s)
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Generalities on random quadrature

Stratification

Our approach relies on splitting [0, 1]s into ks “sub-cubes”, and performing
l evaluations of f inside each: n = l × ks , so k = O(n1/s).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Let Ck denote the set of centres of the sub-cubes, and Bk(c) the sub-cube
with center c ∈ Ck .
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Generalities on random quadrature

Haber (1966)’s estimator (optimal for r = 1)

Î(f ) := 1
n
∑

c∈Ck

f (c + Uc), Uc ∼ U(
[
− 1
2k ,

1
2k

]s
)

note that c + Uc ∈ Bk(c), the sub-cube with centre c.

For f ∈ C1([0, 1]s), each term f (c + Uc):

has expectation n
∫

Bk(c) f (u)du;

has variance n−2/s , since for u, v ∈ Bk(c),

|f (u)− f (v)| ≤ ‖∇f ‖∞
1
k

⇒ the RMSE of Î(f ) is O(n−1/2−1/s) provided f ∈ C1.
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Î(f ) := 1
n
∑

c∈Ck

f (c + Uc), Uc ∼ U(
[
− 1
2k ,

1
2k

]s
)

note that c + Uc ∈ Bk(c), the sub-cube with centre c.

For f ∈ C1([0, 1]s), each term f (c + Uc):

has expectation n
∫

Bk(c) f (u)du;

has variance n−2/s , since for u, v ∈ Bk(c),

|f (u)− f (v)| ≤ ‖∇f ‖∞
1
k
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Generalities on random quadrature

In terms of function approximation

Alternatively, we could approximate f by a piecewise constant function:

fn(x) =
∑

c∈Ck

f (c)× 1Bk(c)(x)

and we would recover a very similar estimator.

Only difference: we use stratified random variables (rather than IID
variables). Variance reduction, but does not change the rate.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 12 / 38



Generalities on random quadrature

In terms of function approximation

Alternatively, we could approximate f by a piecewise constant function:

fn(x) =
∑

c∈Ck

f (c)× 1Bk(c)(x)

and we would recover a very similar estimator.

Only difference: we use stratified random variables (rather than IID
variables). Variance reduction, but does not change the rate.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 12 / 38



Generalities on random quadrature

Haber (1967)’s estimator (optimal for r = 2)

Î(f ) := 1
ks

∑
c∈Ck

gc(Uc), Uc ∼ U(
[
− 1
2k ,

1
2k

]s
)

where
gc(u) = f (c + u) + f (c − u)

2

so n = 2ks evaluations; local antithetic effects.

Each term gc(Uc):

has expectation n
∫

B(c) f (u)du

has variance n−4/s since gc(u) = f (c) +O(‖u‖2)

⇒ the RMSE of Î(f ) is O(n−1/2−2/s) provided f ∈ C2.
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Generalities on random quadrature

We generalise Haber’s estimators

Two approaches:
1 Higher-order cancellations by combining 3 or more terms
2 Control variates
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Vanishing functions: combining 3 or more terms

Section 2

Vanishing functions: combining 3 or more terms
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Vanishing functions: combining 3 or more terms

Cancellation: combining 4 terms

for f ∈ C4([0, 1]s), since

gc(u) := f (c + u) + f (c − u)
2 = f (c) + 1

2uT H(c)u +O(k−4)

one has
gc(λu)− λ2gc(u) = (1− λ2)f (c) +O(k−4)

Problem: if |λ| 6= 1,
∑

c f (c + λUc) does not have the right expectation,
since the support of c + λUc is now a hyper-cube with centre c and side
length |λ|/k.
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Vanishing functions: combining 3 or more terms

Vanishing function

Assume that f may be extended to f̄ : Rs → R, with f̄ ∈ Cr (Rs) and
f̄ (x) = 0 for x 6∈ [0, 1]s . Then∫

[0,1]s
f (u)du =

∫
Rs

f̄ (u)du.

Take |λ| = 1, 3, 5, . . . and m ≥ (|λ| − 1)/2, so that

1
ks

∑
c∈Cm,k

f (c + λUc)

remains an unbiased estimator of I(f ). (Here, Cm,k is Ck plus the centers
of a few cubes immediately outside of [0, 1]s .)

For instance, for λ = 3, the expectation of a given term is the integral of f
over 3s sub-cubes. In return, each sub-cube is “visited” exactly 3s times.
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Vanishing functions: combining 3 or more terms

Vanishing estimator (any r ≥ 1)

Based on n = rks evaluations of f :

Îr ,k(f ) = 1
ks

∑
c∈Cm,k

r∑
i=1

γr
i f (c + λiUc)

where (λ1, λ2, λ3, · · · ) = (1,−1, 3,−3, 5,−5, · · · ), and the γr
i s are chosen

so that r∑
i=1

γr
i f (c + λiu) = f (c) +O(‖u‖r )

(Vandermonde system)
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Vanishing functions: combining 3 or more terms

Conclusion

We get an unbiased estimator, with (optimal) RMSE O(n−1/2−r/s)
(provided f is Cr ), which is easy to compute.

However, this is restricted to vanishing functions.
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Vanishing functions: combining 3 or more terms

Practical use of the vanishing estimator

An integral over Rs may be rewritten as:∫
Rs

h(x)dx =
∫
Rs

q(x)h(x)
q(x)dx

=
∫

[0,1]s

h(T (u))
q(T (u))du

where T is the map such that T (U) is a r.v. with probability density q
(Rosenblatt transformation, a.k.a. multivariate inverse CDF).

The so-obtained integrand is vanishing as soon as q � h in the tails; take q
as e.g. a product of independent Student variables.

See numerical experiments.
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General case: control variates and numerical derivatives

Section 3

General case: control variates and numerical
derivatives
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General case: control variates and numerical derivatives

Control variates

General recipe to reduce the variance of a Monte Carlo estimator:

1
n

n∑
i=1

Yi .

Find variables Zi such that:

E[Zi ] = 0

Corr(Yi ,Zi )� 0

Then replace the above estimator by:

1
n

n∑
i=1

(Yi − Zi )
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General case: control variates and numerical derivatives

Back to Haber’s second estimator

Î(f ) = 1
ks

∑
c∈Ck

gc(Uc)

where

gc(u) = 1
2 f (c + u) + 1

2 f (c − u) = f (c) + 1
2uT Hf (c)u +O(‖u‖4)

Obvious control variate:

1
2UT

c Hf (c)Uc − E
[1
2UT

c Hf (c)Uc

]
Drawback: requires to compute the Hessian.
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General case: control variates and numerical derivatives

Numerical derivatives, a hot topic

Cover of A 660+ page book on numerical mathematics with 0 page on
numerical derivatives.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 24 / 38



General case: control variates and numerical derivatives

Numerical derivatives, a hot topic

Cover of A 660+ page book on numerical mathematics with 0 page on
numerical derivatives.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 24 / 38



General case: control variates and numerical derivatives

Things to know (about numerical derivatives)

Based on finite differences, e.g. for f : R→ R

f (x + h)− f (x − h)
2h = f ′(x) +O(h2)

−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)
12h = f ′(x) +O(h4)

Choice of h: non-trivial trade-off between formula error and finite precision
error.
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General case: control variates and numerical derivatives

One thing to know about multivariate numerical derivatives

It is actually easy (and fast) to approximate any partial derivative on a
grid: that is, if you have already computed f (c) for each c ∈ Ck , then you
can approximate Dαf (c) by combining the neighbour terms, f (c ± λh),
with h = 1/k, λ ∈ N.

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 26 / 38



General case: control variates and numerical derivatives

Back to our problem

We compute f (c) for each centre c ∈ Ck of our stratified sub-cubes.

We obtain all the numerical derivatives of order 2, 4, . . . by doing linear
combinations of these f (c).

We replace in our control variates the true derivatives with these numerical
derivatives.

This means that h = 1/k, so our numerical derivatives are not very
accurate, but they are just accurate enough to avoid changing the order of
convergence.
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General case: control variates and numerical derivatives

Formal definition of our estimator

For a given r ≥ 2

1
ks

∑
c∈C0,k

gc(Uc) +
∑

l=2,4,...,r

∑
|α|=l

1
α! D̂αf (c)(Uα

c − EUα
c )


with gc(u) = {f (c + u) + f (c − u)}/2.

Based on n = 3ks evaluations: 2 third at random places, one third at the
centres c.

When r = 1, 2, we recover Haber’s estimators.
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General case: control variates and numerical derivatives

Properties of our general estimator

Assuming f ∈ Cr ([0, 1]s):

Optimal RMSE O(n−1/2−r/s).

Error is O(n−r/s) with probability one.

Error is zero if f is a polynomial of order p < r .
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Numerical results: general estimator

Section 4

Numerical results: general estimator
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Numerical results: general estimator

Dick (2011)’s example (s = 1, 2)

101 102 103 104 105 106

nr evaluations

10 26

10 22

10 18

10 14

10 10

10 6

10 2

re
l-m

se

1

24
6810

1

23
4

f1(u) = ueu

strat
Dick

101 102 103 104 105 106

nr evaluations
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10 10

10 6

10 2
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l-m

se 1

2

46810

1

2

3

4

f2(u) = u2eu1u2

strat
Dick

Relative MSE (mean squared error) vs number of evaluations for the
vanishing estimator (thick lines) and Dick’s estimator (dotted line). The
value of r (stratified) or α (Dick’s) are printed next to each curve. Left: f1;
Right: f2.
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Numerical results: general estimator

Dick (2011)’s example (s = 4, 6)
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Numerical results: vanishing estimator

Section 5

Numerical results: vanishing estimator

Nicolas Chopin (ENSAE, IPP (Institut Polytechnique de Paris))Higher-order stochastic integration through cubic stratification 33 / 38



Numerical results: vanishing estimator

Setup

Marginal likelihood (evidence) of a Bayesian logistic model, Pima dataset;
we take the s first predictors for s = 1, . . . , 8.

We rewrite this quantity as an integral over [0, 1]s using importance
sampling (and a heavy-tailed proposal).
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Numerical results: vanishing estimator

Plots s = 2, 4
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Numerical results: vanishing estimator

Plots s = 6, 8
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Conclusion

Section 6

Conclusion
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Conclusion

Concluding remarks

Optimality results for random quadrature were known for a long time,
but practical estimators were more or less lacking.

Variance estimates (from a few runs) available.

Of course, they are not so practical when s � 10. Consider the
scrambling QMC strategy of Owen (1998) instead.
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