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Preliminaries - our model

(Ω, Σ, (Σt)t≥0,P) – probability space with sufficiently rich filtration,

T > 0 – termination time,

W = [W1, W2, . . .]T – countably dimensional Wiener process,

x0 ∈ R - initial value.

Let us consider the following one-dimensional SDE

X (t) = x0 +
t∫

0

a(s, X (s))ds +
+∞∑
j=1

t∫
0

σj(s)dWj(s), t ∈ [0, T ], (1)

where σ(s) = (σ1(s), σ2(s), . . .) ∈ ℓ2(R) for each s ∈ [0, T ].
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Preliminaries - cont’d

∥ · ∥
ℓ2 - ℓ2(R) norm;

∥ · ∥2 - L2 norm on Ω × [0, T ].

Assumption (drift)
(A) We assume that the drift coefficient a : [0, T ] × R 7→ R belongs to
C1,2([0, T ] × R) and satisfies the following conditions:

(A1) |a(t, x) − a(s, x)| ≤ C1(1 + |x |)|t − s| for all t, s ∈ [0, T ], x ∈ R,
(A2) |a(t, 0)| ≤ C1 for all t ∈ [0, T ],
(A3) |a(t, x) − a(t, y)| ≤ C1|x − y | for all x , y ∈ R, t ∈ [0, T ],
(A4)

∣∣ ∂a
∂x (t, x) − ∂a

∂x (t, y)
∣∣ ≤ C1|x − y | for all pairs (t, x), (t, y) ∈ [0, T ] × R

for some C1 > 0.
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Preliminaries - cont’d

Let δ = (δ(k))∞
k=1 ⊂ R be a positive, strictly decreasing sequence

vanishing at infinity.

By Gδ we denote a set of all non-decreasing sequences
G = (G(n))∞

n=1 ⊂ N such that G(n) → +∞ and

lim
n→+∞

n1/2 δ
(
G(n)

)
= 0. (2)

The set of sequences G falling under (2) is non-empty.
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Preliminaries - cont’d

Assumption (diffusion)
(S) We assume that diffusion coefficient
σ = (σ1, σ2, . . .) : [0, T ] 7→ ℓ2(R) satisfies the following conditions:

(S1) ∥σ(0)∥ℓ2 ≤ C2,

(S2) ∥σ(t) − σ(s)∥ℓ2 ≤ C2|t − s| for all t, s ∈ [0, T ],

(S3) ∥σ(t) − Pkσ(t)∥ℓ2 ≤ C2 δ(k) for all k ∈ N, t ∈ [0, T ].

where C2 > 0, and δ = (δ(k))+∞
k=1 is as before.

Here we leverage the notation Pk : ℓ2(R) 7→ ℓ2(R), where
Pkx = (x1, x2, . . . , xk , 0, 0, . . .). We denote σk(t) = (Pkσ)(t) and
P∞ = Id .
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Truncated dimension approximation

Let M ∈ N. Our idea is to provide the approximation of ’truncated’
solution XM = (XM(t))t∈[0,T ], defined as follows

XM(t) = x0 +
t∫

0

a(s, XM(s)) ds +
t∫

0

σM(s) dW (s), t ∈ [0, T ],

(3)
where

t∫
0

σM(s) dW (s) =
M∑

j=1

t∫
0

σj(s) dWj(s).
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Truncated dimension approximation-cont’d

Proposition 1.
For every M ∈ N ∪ {∞} the equation (3) admits a unique strong solution
X = (X (t))t∈[0,T ]. Moreover, there exists K1 ∈ (0, +∞), such that for
every M ∈ N ∪ {∞} we have that

E
(

sup
0≤t≤T

|XM(t)|2
)

≤ K1.

Proposition 2.

There exists K1 ∈ (0, +∞) such that for any M ∈ N it holds

sup
0≤t≤T

∥X (a, σ, x0)(t) − XM(a, σ, x0)(t)∥L2(Ω) ≤ K1δ(M).
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Minimal error bounds - definition of an admissible method

X = (XMn,k̄n
)∞
n=1 is defined by X = (M̄, ∆̄, N̄ , ϕ̄), where:

M̄ = (Mn)∞
n=1 ∈ Gδ.

(∆̄n)∞
n=1 is a sequence of (possibly) non-expanding partitions of the interval

[0, T ]
∆̄n : 0 = t̄0,n < t̄1,n < . . . < t̄k̄n−1,n < t̄k̄n,n = T ,

where for some C1, C2 > 0 it holds

C1 n ≥ k̄n ≥ C2 n1/2, n ≥ n0(X) ∈ N.

N̄ = (NMn,k̄n
(W ))∞

n=1 is a sequence of information vectors

NMn,k̄n
(W ) =

Mn⊕
k=1

[
Wk(t̄1,n), Wk(t̄2,n), . . . , Wk(t̄ k̄n,n)

]
.

ϕ̄ = (ϕn)∞
n=1 is a sequence of Borel mappings ϕn : Rn·Mn 7→ L2([0, T ]), such that

ϕn(NMn,k̄n
(W )) = XMn,k̄n

, n ∈ N.
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Minimal error bounds - admissible algorithms

The class of algorithms satisfying above conditions is denoted by χnoneq.
We also distinguish a subclass χeq ⊂ χnoneq of methods leveraging
equidistant partitions

χeq =
{

X ∈ χnoneq | ∃n0=n0(X) : ∀n≥n0 ∆̄n = {jT/n : j = 0, 1, . . . , k̄n}
}

.

Similarly, for a fixed truncation sequence M̄, we define corresponding
subclasses χM̄

noneq and χM̄
eq.
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Minimal error bounds - cont’d

Informational cost of the algorithm XMn,k̄n
:

cost(XMn,k̄n
) =

{
Mn · k̄n, when σ ̸≡ 0,

0, when σ ≡ 0.

Global approximation error for XMn,k̄n
:

∥∥X − XMn,k̄n

∥∥
2 =

(
E

∫ T

0
|X (t) − XMn,k̄n

(t)|2 dt
)1/2

, n ∈ N.
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Minimal error bounds - notation

Let (a(n))∞
n=1, (b(n))∞

n=1 be two sequences of positive numbers.

a(n) ≈ b(n) :⇔ lim
n→+∞

a(n)
b(n) = 1.

Furthermore, we will say that

a(n) ⪅ b(n) :⇔ lim sup
n→+∞

a(n)
b(n) ≤ 1.
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Minimal error bounds

Theorem 2 (S., 2023), part 1.

Let M̄ = (Mn)∞
n=1 ∈ Gδ. We have the following asymptotic bound

inf
X∈χM̄

noneq

(
cost(XMn,k̄n

)
)1/2∥∥XMn,k̄n

− X
∥∥

2 ⪆
M1/2

n√
6

∫ T

0
∥σ(t)∥ℓ2dt.

Theorem 2 (S., 2023), part 2.

Let M̄ = (Mn)∞
n=1 ∈ Gδ. We have the following asymptotic bound

inf
X∈χM̄

eq

(
cost(XMn,k̄n

)
)1/2∥∥XMn,k̄n

− X
∥∥

2 ⪆ M1/2
n

√
T
6

( T∫
0

∥σ(t)∥2
ℓ2 dt

)1/2
.
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Minimal error bounds -cont’d

Let us denote by

Cnoneq = 1√
6

∫ T

0
∥σ(t)∥ℓ2 dt

and

Ceq =
√

T
6

( T∫
0

∥σ(t)∥2
ℓ2 dt

)1/2

the constants appearing on the RHS in Theorem 2, respectively.
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Investigation of an optimal algorithm in χM̄
eq

For fixed truncation level sequence M̄ = (M∗
n )∞

n=1 ∈ Gδ and n ∈ N, we
define truncated dimension Euler scheme XEq∗

M∗
n ,n based on the equidistant

partitions ∆eq
n = (teq

j,n)n
j=0

XEq∗
M∗

n ,n(0) = x0

XEq∗
M∗

n ,n(teq
j+1,n) = XEq∗

M∗
n ,n(teq

j,n) + a
(
teq
j,n, XEq∗

M∗
n ,n(teq

j,n)
)
(teq

j+1,n − teq
j,n)

+ σM∗
n (teq

j,n)
(
W (teq

j+1,n) − W (teq
j,n)

)
,

j = 0, 1, . . . , n − 1.

The associated process (XEq∗
M∗

n ,n(t))t∈[0,T ] is obtained by linear
interpolation.
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Investigation of optimal algorithm in χM̄
eq - cont’d

We show that

n1/2∥X − XEq∗
M∗

n ,n∥2 ≈
(T

6

n−1∑
j=0

∥σM∗
n (teq

j,n)∥2
ℓ2

T
n

)1/2
, n → +∞.

As a result,

(M∗
nn)1/2∥X−XEq∗

M∗
n ,n∥2 ≈ (M∗

n)1/2

√
T
6

( T∫
0

∥σ(t)∥2
ℓ2 dt

)1/2
, n → +∞.
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Algorithm with adaptive step-size control

Let us fix n ∈ N and M̄ = (M∗
n )∞

n=1 ∈ Gδ. The proposed scheme X step
M∗

n ,k∗
n

uses the following adaptive path-independent step-size control: t̂0,n := 0
and

t̂j+1,n := t̂j,n + T
n max{εn, ∥σM∗

n (t̂j,n)∥ℓ2}
, j = 0, 1, . . . , k∗

n − 1,

where k∗
n = inf{j ∈ N | t̂j,n ≥ T}, and ε̄ = (εn)∞

n=1 ⊂ R+ is a
non-increasing sequence satisfying

lim
n→+∞

εn = lim
n→+∞

1
n ε2

n
= 0.
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Algorithm with adaptive step-size control - cont’d

Now we set
X step

M∗
n ,k∗

n
(0) = x0

X step
M∗

n ,k∗
n
(t̂j+1,n) = X step

M∗
n ,k∗

n
(t̂j,n) + a(t̂j,n, X step

M∗
n ,k∗

n
(t̂j,n))(t̂j+1,n − t̂j,n)

+ σM∗
n (t̂j,n)(W (t̂j+1,n) − W (t̂j,n)),

j = 0, 1, . . . , k∗
n − 1,

with t̂k∗
n ,n replaced with T .
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Algorithm with adaptive step-size - cont’d

We introduce the partition ∆∗
n by taking t∗

j,n = t̂j,n, j = 0, 1, . . . , k∗
n − 1,

and t∗
k∗

n ,n = T .

Ultimately, for each j , we perform linear interpolation between
X step

M∗
n ,k∗

n
(t∗

j,n) and X step
M∗

n ,k∗
n
(t∗

j+1,n) to obtain the final process

X∗
M∗

n ,k∗
n

= (X step
M∗

n ,k∗
n
(t))t∈[0,T ].

Properties
Under the assumptions (A1) - (A4), (S1)-(S3):
a) The proposed method X step

M∗
n ,k∗

n
with step-size control is an element of χnoneq

and attains point T .

b) k∗
n is deterministic and lim

n→+∞
k∗

n (σ) = +∞;

c) max
0≤j≤k∗

n −1
(t∗

j+1,n − t∗
j,n) ≤ T

nεn
→ 0, n → +∞.
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Asymptotically (almost) optimal algorithms for classes
χeq, χnoneq

Recall that by Gδ we denote a set of all non-decreasing sequences
G = (G(n))∞

n=1 ⊂ N such that G(n) → +∞ and

lim
n→+∞

n1/2 δ
(
G(n)

)
= 0.

Theorem 3. (S. 2023)
Let a, σ satisfy conditions (A) and (S) with sequence δ, respectively. Then, for
every method X̄ = (X Mn,k̄n )∞

n=1 ∈ χ⋄, ⋄ ∈ {noneq, eq}, we have(
cost(X Mn,k̄n )

)1/2 ∥∥X − X Mn,k̄n

∥∥
2
⪆

(
δ−1(n−1/2)

)1/2 C⋄, n → +∞.
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Asymptotically (almost) optimal algorithms for classes
χeq, χnoneq - cont’d

Theorem 3. (S. 2023) - part 2.

For every truncation level sequence Mn with δ−1(n−1/2) = o(Mn), n → +∞, there
exists a sequence M∗ = (M∗

n )∞
n=1 ∈ Gδ such that M∗

n = o(Mn), n → +∞, and:
a) the truncated-dimension Euler algorithm with adaptive path-independent step-size
control X∗ =

(
X∗

M∗
n ,k∗

n

)∞
n=1

∈ χnoneq satisfying

(
cost(X̄M∗

n ,k∗
n )

)1/2∥∥X − X̄M∗
n ,k∗

n

∥∥
2
⪅

√
M∗

n
6

∫ T

0
∥σ(t)∥ℓ2 dt, n → +∞;

b) the truncated-dimension Euler algorithm XEq∗ =
(

XEq∗
M∗

n ,n

)∞
n=1

∈ χeq , based on the
sequence of equidistant meshes, and satisfying

(
cost(XEq∗

M∗
n ,n)

)1/2∥∥X − XEq∗
M∗

n ,n

∥∥
2
⪅

√
M∗

n T
6

(∫ T

0
∥σ(t)∥2

ℓ2 dt
)1/2

, n → +∞.
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Numerical experiments - chosen model

a(t, x) = (t + 2)(x − 1), t ∈ [0, T ], x ∈ R,

σk(t) = e2t + 2
(k + 1)p

√
log(k + 1)

t ∈ [0, T ], k = 1, 2, . . . ,

where p > 1/2.

For all l ∈ N, l > 1 it holds

∥σ(t)−Pl σ(t)∥2
ℓ2 =

∣∣∣∣∣
+∞∑
k=l

(e2t + 2)2

(k + 1)2p log(k + 1)

∣∣∣∣∣ ≤ (e2T +2)2

∣∣∣∣∣∣
+∞∫

(2p−1) log(l+1)

e−v v−1 dv

∣∣∣∣∣∣ ,

and the integral appearing above is equal to the upper incomplete gamma function
Γ
(

1, (2p − 1) log(l + 1)
)

. Therefore,

∥σ(t) − Pl σ(t)∥ℓ2 ≤ (e2T + 2)e−0.5(2p−1) log(l+1) = (e2T + 2)
(

l + 1
)1/2−p

, l ∈ N.
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Numerical experiments - chosen model

∥σ(t) − Pnσ(t)∥ℓ2 ≤ K (T )n1/2−p, n ∈ N.

Therefore, we can assume

δ(n) ≈ n1/2−p ⇒ δ−1(n−1/2) ≈ n
1

2p−1 .

In our simulations, we set x0 = 0.9, T = 1.5, p = 0.9, hence the
admissible truncation levels can be of the form

Gδ ∋ Mn ⪆ n5/4+ε, n → +∞,

for some ε > 0. Our final choice is to take M∗
n = 0.15 · n1.28 and

εn = n−0.3, n ∈ N.
We also note that Ceq = 4.550580..., while Cnoneq = 3.873137....
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Numerical experiments - cont’d

Our target is to verify if the empirical ratio Ĉnoneq/Ĉeq matches the
theoretical one (0.8511). To this end, we leverage the following metric

error(X alg ) :=
(

1
K

K∑
l=1

Q
(

|X alg
l (a, b, W (l)) − XWratioM∗

n ,n∗,l (a, b, W (l))|2
))1/2

,

where:
K is a number of simulated trajectories;

X alg
l , XWratioM∗

n ,n∗,l , and W (l) are the l–th generated trajectories of the
corresponding processes X alg ∈ {XEq∗

M∗
n ,k∗

n
, X step

Mn∗,k∗
n

}, l = 1, . . . , K ;

Q is a composite Simpson quadrature based on: the time points for which X alg

is evaluated, and the midpoints of the corresponding subintervals;

rare-fine grid approach is utilised due to the fact that the exact solution formula
contains stochastic integrals. The fine grid method is always based on
MAX_n = 106 equidistant nodes and uses Wratio · M∗

n – dimensional Wiener
process.
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Numerical experiments - cont’d

n k∗
n M∗

n K Wratio Improvement ratio
1000 7832 1037 1000 2.0 0.977977
2000 15686 2520 1000 2.0 0.945800
5000 39249 8142 250 1.5 0.915620
10000 78520 19773 94 1.5 0.976337

Table: Simulation results for XEq∗
M∗

n ,n and X step
M∗

n ,k∗
n

.
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Summary and conclusions

We constructed truncated dimension Euler schemes: a) based on
equidistant mesh; b) with adaptive step-size control;
in a model with additive, countably dimensional structure of noise.

We derived lower bound for the exact asymptotic error behaviour.
Those estimates show that in order to decrease the minimal error, a
significant additional cost needs to be taken.

We proved that constructed methods are optimal / almost optimal
in the considered (sub)classes.

the conclusions from our experiments seem to be in line with the
derived theoretical results.
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Future work

Considering algorithms with additional adaptation with
respect to the Wiener process coordinates,
Extending present results linked to global approximation
problem to the models with σ = σ(t, x) and possibly jumps,
Case study - efficient implementation of constructed
algorithms by using GPU computational power.
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Thank you for your attention!
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