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Outline

• Introduce kinetic Langevin dynamics, some discretisations and their
convergence guarantees;

• A method to prove convergence with weak stepsize assumptions in
the strongly log-concave setting;

• The effect of using a stochastic gradient approximation on
convergence;

• An application to Bayesian Logistic regression;
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Underdamped Langevin Dynamics

A popular MCMC method is based on the underdamped Langevin
dynamics SDE:

dVt = −∇U(Xt)dt − γVtdt +
√

2γdWt

dXt = Vtdt,

where γ is a friction parameter. This has been studied by physicists
([Einstein, 1905]) and mathematicians and has invariant measure
π ∝ exp

(
−U(x)− 1

2∥v∥
2
)
.
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Underdamped Langevin Dynamics

A popular MCMC method is based on the underdamped Langevin
dynamics SDE:

dVt = −∇U(Xt)dt − γVtdt +
√

2γdWt

dXt = Vtdt,

where γ is a friction parameter.
In practice this SDE is discretised and the individual timesteps generated
by integration are viewed as approximate draws from the target
distribution.
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Popular Discretisations

The second order dynamics have additional complexity compared to the
overdamped dynamics and there are many more possible discretisations.
These include

Euler-Maruyama (EM);

BAOAB, OBABO, OABAO splitting methods
[Bussi and Parrinello, 2007, Leimkuhler and Matthews, 2013];

Stochastic Euler Scheme (SES) [Ermak and Buckholz, 1980];

Stochastic Position Verlet (SPV), Stochastic Velocity Verlet (SVV)
[Melchionna, 2007];

BBK scheme [Brünger et al., 1984];

...
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A metric of error: Non-asymptotic guarantees

A metric of error that they use is

W2(µ0P
n
h , µ) ≤ W2(µ0P

n
h , µh)︸ ︷︷ ︸

Convergence Rate

+W2(µh, µ)︸ ︷︷ ︸
Bias

for some initial measure µ0 and target measure µ and Pn
h is the transition

kernel of the discretisation with step-size h and invariant measure µh.

The aim is to optimally tune parameters to minimise the number of steps
for

W2(µ0P
n
h , µ) < ϵ

for some error ϵ.

This talk: Convergence rate to the invariant measure for many different
discretisations, trying to get results that hold for a large range of stepsizes.
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Splitting Methods

One can split up the dynamics into parts which can be integrated exactly,
see [Bussi and Parrinello, 2007].

dVt = −∇U(Xt)dt − γVtdt +
√

2γdWt

dXt = Vtdt,

Then you can integrate each part exactly

B : v → v − h∇U(x),

A : x → x + hv ,

O : v → ηv +
√

1− η2ξ,

where η := exp (−γh). For example the second order method BAOAB.

Remark

One can create a kinetic Langevin integrator by considering a Hamiltonian
integrator between two O steps. For example the randomised midpoint
integrator of [Bou-Rabee and Marsden, 2022], we will refer to this
integrator as rOABAO.
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Stochastic Euler Scheme

A popular method in machine learning literature (the Stochastic Euler
Scheme) is based on fixing the force over an interval and integrate
A+ B +O exactly.

Xk+1 = Xk +
1− η

γ
Vk −

γh + η − 1

γ2
∇U (Xk) + ζk+1,

Vk+1 = ηVk −
1− η

γ
∇U (Xk) + ωk+1,

[Cheng et al., 2018, Dalalyan and Riou-Durand, 2020,
Sanz-Serna and Zygalakis, 2021]

Peter Whalley (UofE) arXiv:2302.10684 June 2023 8 / 28



Assumptions

We assume that the target measure takes the form

µ(dx) ∝ exp (−U(x))dx ,

for a potential U.

Assumption (M-∇Lipschitz)

There exists a M > 0 such that for all x , y ∈ Rd

|∇U (x)−∇U (y)| ≤ M |x − y | .

Assumption (m-convexity)

There exists a m > 0 such that for all x , y ∈ Rd

⟨∇U(x)−∇U(y), x − y⟩ ≥ m |x − y |2 .

There are results in the non-convex setting see for example
[Eberle et al., 2019].
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Twisted norm and Wasserstein Distance

One cannot get Wasserstein convergence with respect to the standard
Euclidean norm, but one can get Wasserstein convergence with
respect to a “twisted Euclidean norm”. 1

|| (x , v) ||2a,b = ||x ||2 + 2b⟨x , v⟩+ a||v ||2,

for a, b > 0 such that b2 < a.

We define the p-Wasserstein between two probability measures µ and ν
with respect to the norm || · ||a,b to be

Wp,a,b (ν, µ) =

(
inf

ξ∈Γ(ν,µ)

∫
R2d

||z1 − z2||pa,bdξ (z1, z2)
)1/p

,

where Γ (µ, ν) is the set of measures with marginals µ and ν (the set of all
couplings between µ and ν).

1[Cheng et al., 2018, Dalalyan and Riou-Durand, 2020, Monmarché, 2021,
Gouraud et al., 2022, Sanz-Serna and Zygalakis, 2021]
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Wasserstein Convergence

Let zk = (xk , vk) and z̃k = (x̃k , ṽk) be two synchronously coupled
trajectories of a numerical scheme for kinetic Langevin. Then if they have
the contraction property

||z̃k+1 − zk+1||2a,b ≤ (1− c (h)) ||z̃k − zk ||2a,b

for a, b > 0 such that b2 > a. Then we have that

W2
p (νP

n
h , µP

n
h ) ≤ C (1− c (h))n W2

p (ν, µ) .

for all 1 ≤ p ≤ ∞.
Our aim is to find a and b to provide explicit assumptions on the stepsize
h and friction parameter γ.

Peter Whalley (UofE) arXiv:2302.10684 June 2023 11 / 28



Convergence rates?

Let z j = z̃j − zj for j ∈ N, then

||z̃k+1 − zk+1||2a,b ≤ (1− c (h)) ||z̃k − zk ||2a,b, (1)

is equivalent to showing that

zTk

(
(1− c (h))N − PTNP

)
zk ≥ 0, where N =

(
1 b
b a

)
,

and zk+1 = Pzk .

Proving contraction is equivalent to showing that the matrix
H := (1− c(h))N − PTNP ≻ 0 is positive definite.
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Example

As an example we have for the Euler-Maruyama scheme the update rule
for zk

xk+1 = xk + hvk , vk+1 = vk − γhvk − hQxk ,

where by mean value theorem we can define
Q =

∫ 1
t=0∇

2U(x̃k + t(xk − x̃k))dt, then ∇U(x̃k)−∇U(xk) = Qx . One
can show that

P =

(
I hI

−hQ (1− γh) I

)
.
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Convergence rates?

The matrix H := (1− c(h))N − PTNP ≻ 0 is symmetric and hence of
the form

H =

(
A B
B C

)
, (2)

we can show that H is positive definite.

Proposition

Let H be a symmetric matrix of the form (2), then H is positive definite if
and only if A ≻ 0 and C − BA−1B ≻ 0. Further if A, B and C commute
then H is positive definite if and only if A ≻ 0 and AC − B2 ≻ 0.

Peter Whalley (UofE) arXiv:2302.10684 June 2023 14 / 28



Results

If γ2 ≥ O(M), for the choice of a = 1
M , η = exp {−γh}, we have

Algorithm b c(h) step-size restriction

EM 1/γ O(mh/γ) O(1/γ)
BBK h/2 + 1/γ O(mh/γ) O(1/γ)

SPV and SVV h/(1− η) O(mh/γ) O(1/γ)

BAOAB h/(1− η) O(mh2/(1− η)) O(1/
√
M)

OBABO h/(1− η) O(mh2/(1− η)) O(1/
√
M)

rOABAO h/(1− η) O(mh2/(1− η)) O(1/
√
M)

SES/EB 1/γ O(mh/γ) O(1/γ)

Remark

The convergence rate of the continuous dynamics on this class of
functions is known to be O(m/γ).
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High friction limit

If you take the limit as γ → ∞ for BAOAB we obtain

xk+1 = xk −
h2

2
∇U(xk) +

h

2
(ξk + ξk+1) ,

which is simply the [Leimkuhler and Matthews, 2013] (LM) scheme with

stepsize h2/2 and limγ→∞ c (h) = h2m
4 .

Now we take the limit as γ → ∞
for OBABO we obtain

xk+1 = xk −
h2

2
∇U(xk) + hξk+1,

which is the Euler-Maruyama scheme for overdamped Langevin with
stepsize h2/2, which has convergence rate O

(
h2m

)
.

• Euler-Maruyama for Kinetic Langevin Dynamics (no well-defined
limit).

• Stochastic Euler Scheme: we obtain the update rule xk+1 = xk in the
limit.
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Convergence Rates Plots
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Figure: Contour plots of ln
(

1−c(h)
h

)
for an anisotropic Gaussian with M = 10 and

m = 1.
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Connection with HMC

[Gouraud et al., 2022] can explain the behaviour of OBABO and BAOAB
through its relation to another sampling method Hamiltonian Monte
Carlo. OBABO can be written as the velocity verlet integrator

v → v − h

2
∇U(x)

x → x + hv

v → v − h

2
∇U(x)

with auto-regressive velocity refreshments given by

v 7→ ηv +
√

1− η2ξ,

where ξ ∼ N (0, 1). This is precisely HMC with partial velocity
refreshments.
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Tightness of restrictions

• For this method of proof we require γ2 ≥ O(M) [Monmarché, 2020].

• Stability threshold for Euler-Maruyama, BAOAB, OBABO are the
same as the step-size restriction for Gaussian targets.

• For other schemes the stability threshold for Gaussian target is not
the same as the step-size restriction, but we do not expect the
schemes to have reasonable bias outside this regime.
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Stochastic gradients

Definition

A stochastic gradient approximation of a potential U is defined by a
function G : Rn × Ω → Rn and a probability distribution ρ on a Polish
space Ω, satisfying that G is measurable on (Ω,F), and that for every
x ∈ Rn, for W ∼ ρ,

E(G(x ,W )) = ∇U(x).

Assumption (Variance of Jacobian)

We assume that the Jacobian of the stochastic gradient G, DxG(x ,W )
exists and it is measurable on (Ω,F). We also assume there exists CG > 0
such that for W ∼ ρ,

sup
x∈Rn

E∥DxG(x ,W )−∇2U(x)∥2 ≤ CG .
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Convergence with Stochastic gradients

Let zk = z̃k − zk , if we synchronously couple the stochastic gradients we
are able to get the expected contraction result (Q = E(Q̃) and Q̃ is
defined by MVT for G):

E∥zk+1∥2a,b ≤ (1− cder(h)) ∥zk∥2a,b + zTk

(
a2E(Q̃ − Q)2 b2E(Q̃ − Q)2

b2E(Q̃ − Q)2 c2E(Q̃ − Q)2

)
zk

Algorithm c(h)

EM O
(
mh/γ − h2CG/M

)
BBK O

(
mh/γ − h2CG/M

)
SPV O

(
mh/γ − h2CG/M

)
SVV O

(
mh/γ − h2CG/M

)
BAOAB O

(
h2m/(1− η)− h2CG

(
η/M + h2

))
OBABO O

(
h2m/(1− η)− h2CG/M

)
rOABAO O

(
h2m/(1− η)− h2CG

(
η/M + h2

))
SES/EB O

(
mh/γ − h2CG/M

)
Table: Contraction rates c(h) in stochastic gradient setting
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Simulation example - MNIST classification

• MNIST data set [LeCun et al., 2010] has 60, 000 training data points
and 10, 000 test data points.

• The images are of size 28 by 28 pixels and hence can be represented
in R784.

• However, we will consider the problem of classification between the 3
and the 5 digits by Bayesian logistic regression.

Figure: MNIST 3 and 5 digits.
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Simulation example - MNIST classification

We use a i.i.d. Gaussian prior p0 with mean 0 and variance σ2 = 0.001.
A more accurate estimator is the variance reduced stochastic gradient
([Johnson and Zhang, 2013]), also called control variate method in the
context of MCMC (see [Quiroz et al., 2018], [Baker et al., 2019]).

• We compare our discretization schemes on this MNIST example.

• Both bias and effective sample sizes are evaluated, test function is
chosen as the potential U.

• Ground truth is established via HMC with 40 million gradient
evaluations, each method is evaluated using 8 million steps (80 runs
with 100000 steps each).
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Bias, γ =
√
M

Algorithm
h = 2/

√
M

γ =
√
M

h = 1/
√
M

γ =
√
M

h = 1/(2
√
M)

γ =
√
M

h = 1/(4
√
M)

γ =
√
M

EM 4.2(±0.089) 1.5(±0.13) 0.79(±0.18) 0.28(±0.23)
BBK 2.7(±0.061) 0.67(±0.099) 0.016(±0.14) −0.18(±0.2)
SPV 123(±0.079) 32.1(±0.091) 8.19(±0.13) 2.07(±0.18)
SVV 126(±0.097) 32.8(±0.091) 8.17(±0.13) 2.03(±0.17)

BAOAB −0.043(±0.049) −0.002(±0.058) 0.13(±0.086) −0.055(±0.12)
BAOAB VRSG 0.47(±0.043) 0.23(±0.066) 0.035(±0.087) 0.036(±0.12)

OBABO 2.7(±0.056) 0.67(±0.076) 0.22(±0.13) 0.17(±0.19)
rOABAO −2.6(±0.062) −0.61(±0.094) 0.025(±0.13) −0.16(±0.19)
SES/EB 2.6(±0.072) 1.2(±0.094) 0.71(±0.11) 0.2(±0.18)

Table: Bias for potential function, γ =
√
M
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Gradient evaluations/effective sample, γ =
√
M

Algorithm
h = 2/

√
M

γ =
√
M

h = 1/
√
M

γ =
√
M

h = 1/(2
√
M)

γ =
√
M

h = 1/(4
√
M)

γ =
√
M

EM 146(±0.7) 221(±0.998) 282(±0.822) 327(±0.581)
BBK 85(±0.535) 148(±0.726) 221(±0.969) 285(±0.933)
SPV 86.7(±0.554) 148(±0.775) 221(±0.887) 284(±0.992)
SVV 86.5(±0.645) 147(±0.801) 222(±0.916) 283(±0.825)

BAOAB 44.3(±0.304) 88.7(±0.585) 152(±0.812) 228(±0.822)
BAOAB VRSG 44.6(±0.332) 86.8(±0.578) 152(±0.915) 226(±0.934)

OBABO 68.6(±0.491) 140(±0.84) 218(±0.942) 282(±0.809)
rOABAO 68.5(±0.507) 140(±0.692) 219(±0.781) 283(±0.862)
SES/EB 87.4(±0.593) 149(±0.663) 220(±0.831) 284(±0.809)

Table: Gradient evaluations / ESS (potential function), γ =
√
M
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Bias, γ =
√
m

γ = O(
√
m) is the best choice of friction in the continuous setting

[Cao et al., 2019].

Algorithm
h = 2/

√
M

γ =
√
m

h = 1/
√
M

γ =
√
m

h = 1/(2
√
M)

γ =
√
m

h = 1/(4
√
M)

γ =
√
m

EM 6.4 · 104(±0.82) 1.5 · 104(±0.72) 1.1 · 103(±0.73) 4.9(±0.11)
BBK 2.8(±0.034) 0.68(±0.041) 0.1(±0.05) 0.0038(±0.066)
SPV 0.72(±0.036) 0.14(±0.043) 0.06(±0.054) −0.014(±0.073)
SVV 3.5(±0.036) 0.81(±0.043) 0.26(±0.061) 0.05(±0.089)

BAOAB 0.03(±0.038) −0.011(±0.049) −0.046(±0.062) 0.043(±0.074)
BAOAB VRSG 6.4(±0.04) 2.4(±0.051) 1.1(±0.063) 0.55(±0.075)

OBABO 2.7(±0.032) 0.65(±0.041) 0.22(±0.052) 0.11(±0.071)
rOABAO −1.7(±0.041) −0.55(±0.041) −0.2(±0.054) −0.033(±0.081)
SES/EB 6.0 · 104(±0.61) 1.5 · 104(±0.48) 1.1 · 103(±0.59) 4.7(±0.068)

Table: Bias for potential function, γ =
√
m
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Gradient evaluations/effective sample, γ =
√
m

Algorithm
h = 2/

√
M

γ =
√
m

h = 1/
√
M

γ =
√
m

h = 1/(2
√
M)

γ =
√
m

h = 1/(4
√
M)

γ =
√
m

EM N.A. N.A. N.A. 189(±0.955)
BBK 15(±0.124) 30.1(±0.233) 57.5(±0.352) 108(±0.717)
SPV 15.1(±0.106) 29.7(±0.209) 57.4(±0.408) 109(±0.725)
SVV 15(±0.121) 29.9(±0.222) 57.5(±0.341) 108(±0.628)

BAOAB 18.8(±0.128) 36.4(±0.288) 66.4(±0.461) 116(±0.849)
BAOAB VRSG 19.7(±0.169) 36.4(±0.242) 67.8(±0.447) 114(±0.662)

OBABO 15(±0.118) 30(±0.204) 57.5(±0.471) 108(±0.711)
rOABAO 16.5(±0.236) 29.7(±0.218) 58.2(±0.356) 109(±0.669)
SES/EB N.A. N.A. N.A. 108(±0.652)

Table: Gradient evaluations / ESS (potential function), γ =
√
m. N.A. indicates

that the method did not converge for the given stepsize.
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Future Work/Open questions

• Wasserstein bias estimates for BAOAB and other schemes.

• Can we get similar step-size restrictions with a more sophisticated
metric and coupling to deal with the non-convex case?

Peter Whalley (UofE) arXiv:2302.10684 June 2023 28 / 28



References I

Baker, J., Fearnhead, P., Fox, E. B., and Nemeth, C. (2019).
Control variates for stochastic gradient mcmc.
Statistics and Computing, 29:599–615.

Bou-Rabee, N. and Marsden, M. (2022).
Unadjusted hamiltonian mcmc with stratified monte carlo time
integration.
arXiv preprint arXiv:2211.11003.
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