
Comparing apples to oranges:
a universal effective sample size

Dootika Vats
Indian Institute of Technology Kanpur, India

Monte Carlo Methods and Applications, Paris

June 30, 2023

1 / 21



Estimation Problem

Consider an expectation estimation problem, typically found in
Bayesian inference. Let π be the density of a distribution on X and
f : X → R. We are interested in

θ :=

∫
X
f (x)π(x)dx < ∞.

We will eventually consider multivariate functions as well.
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Estimation Problem

Typically π is complex enough that a sampling procedure is used:

1. Vanilla Monte Carlo: X1, . . . ,Xm
iid∼ π

θ̂VMC :=
1

m

m∑
t=1

f (Xt)
a.s.→ θ as m → ∞ .

Assuming λ2 := Varπ[f (X1)] < ∞,

√
m
(
θ̂VMC − θ

)
d→ N(0, λ2) as m → ∞.

2. Markov chain Monte Carlo

3. Importance Sampling
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Markov chain Monte Carlo

Let {Xt}t≥1 be a π-ergodic Markov chain. Then:

θ̂MCMC :=
1

n

n∑
t=1

f (Xt)
a.s.→ θ as n → ∞ .

Further, if a Markov chain CLT holds, then as n → ∞
√
n
(
θ̂MCMC − θ

)
d→ N(0, σ2) ,

where

σ2 = λ2 + 2
∞∑
k=1

Covπ(f (X1), f (X1+k)) .
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Effective sample size (ESS) in MCMC

If MCMC samples of size n

Varπ
(
θ̂MCMC

)
≈ σ2

n

If iid samples of size m

Varπ
(
θ̂VMC

)
=

λ2

m

Question: Can we compare the MCMC estimation quality to the
estimation quality from iid samples?
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ESS in MCMC

Answer: For what m, is Varπ
(
θ̂MCMC

)
= Varπ

(
θ̂VMC

)
?

That m, is the effective sample size (ESS).

m = ESS := n
λ2

σ2
.

Interpretation: In order to estimate θ, this MCMC sample is
equivalent to ESS amount of iid samples from π.

Estimating λ2 and the more complicated σ2 well is challenging and
important. See Flegal and Jones (2010).
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Multivariate ESS in MCMC

Following the same principles for f : X → Rp:

Λ = Varπ[f (X1)]

Σ = Λ +
∞∑
k=1

(
Covπ(f (X1), f (Xk+1)) + Covπ(f (X1), f (Xk+1))

T
)

then, Vats et al. (2019) define a multivariate ESS:

ESS = n

(
det(Λ)

det(Σ)

)1/p

.
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Importance Sampling

Let X1, . . . ,Xn
iid∼ q, where q is an importance density.

Define weights

w(Xt) =
π(Xt)

q(Xt)
.

The self-normalized importance sampling estimator of θ is

θ̂SNIS :=

n∑
t=1

f (Xt)w(Xt)

n∑
t=1

w(Xt)

a.s.→ θ as n → ∞.

Quality of estimation depends critically on q and thus the weights w .
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Importance Sampling Variance

Assume

τ2 := lim
n→∞

nVarq(θ̂SNIS) =
Eq(w(X1)

2(f (X1)− θ)2)

Eq(w(X1))
< ∞

then asymptotic normality of the SNIS estimator holds:

√
n(θ̂SNIS − θ)

d→ N(0, τ2)

τ2 can be estimated using weighted samples from q. For the purposes
of this talk, we will not discuss estimation.
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Kong’s ESS in Importance Sampling

A popular measure of the quality of importance sampling procedure is
the ESS of Kong (1992). Let

w̃(Xt) =
w(Xt)
n∑

i=1
w(Xi )

ESS =
1

n∑
t=1

w̃(Xt)2

▶ useful to assess quality of weights

▶ not interpretable as an effective sample size

▶ no dependence on f
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A closer look

A closer look at Kong (1992) reveals the evolution of how this ESS
came about. Elvira et al. (2018) study this in good detail.

The original definition of ESS in Kong (1992) is

ESS = n
Varπ(θ̂VMC )

Varq(θ̂SNIS)

Through a series of approximations, Kong (1992) arrives at the
popular approximation of the ESS used today.

This first definition is similar to ESS in MCMC.
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A modification of ESS

In Agarwal et al. (2022), we make a slight modification in the
definition of ESS

ESS = n
nVarπ(θ̂VMC )

lim
n→∞

nVarq(θ̂SNIS)
= n

λ2

τ2
.

This definition allows for:

▶ A clear interpretation of ESS as effective sample size

▶ dependency on f (as it should)

▶ a stopping criterion based on ESS ≥ pre-determined lower
bound.
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Universal ESS: a roadmap

Default:
√
n
(
θ̂VMC − θ

)
d→ N(0, λ2)

MCMC SNIS
√
n
(
θ̂MCMC − θ

)
d→ N(0, σ2)

√
n
(
θ̂SNIS − θ

)
d→ N(0, τ 2)

ESS = n
λ2

σ2
ESS = n

λ2

τ 2

ESS = n

(
det(Λ)

det(Σ)

)1/p

ESS = n

(
det(Λ)

det(T )

)1/p

where T is the asymptotic covariance matrix for θ̂SNIS .

This recipe may be followed generally!
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Stopping rules for simulations

√
n
(
θ̂ − θ

)
d→ Np(0,Υ) , and Υ̂

stop simulation when:

Volume of Confidence Ellipsoid + vanishing n term ≤ ϵ det(Λ̂)1/2

Theorem
Let estimators Υ̂ and Λ̂ be strongly consistent. Let ϵ be a desired
tolerance level for quality of estimation, and α be a required
confidence level. Then stopping at the random time T ∗ when

ÊSS := T ∗

(
det(Λ̂)

det(Υ̂)

)1/p

≥
22/pπχ2

1−α,p

(pΓ(p/2))2/p
1

ϵ2

yields asymptotically valid confidence region for θ̂ as ϵ → 0.

14 / 21



Stopping rules for simulations

√
n
(
θ̂ − θ

)
d→ Np(0,Υ) , and Υ̂

stop simulation when:

Volume of Confidence Ellipsoid + vanishing n term ≤ ϵ det(Λ̂)1/2

Theorem
Let estimators Υ̂ and Λ̂ be strongly consistent. Let ϵ be a desired
tolerance level for quality of estimation, and α be a required
confidence level. Then stopping at the random time T ∗ when
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Stopping rules for simulations

Stop simulation when

ÊSS ≥
22/pπχ2

1−α,p

(pΓ(p/2))2/p
1

ϵ2

▶ ϵ: is chosen by user

▶ α: is chosen by user – default .95

▶ p: dimension of estimation

▶ lower bound available before simulation begins
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Example: Gaussian target

Consider SNIS estimator of mean of

π = N

0, Λ =

 2 .5
√
2

.5
√
2 1

 with

q = N

0,

 2 1

1 1



In 100 repetitions

▶ We set ϵ = .02, .04, .06

▶ For each ϵ, determine when simulation stops according to ESS
criterion

▶ Plot ∥θ̂ − θ∥2 vs Monte Carlo sample size.
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Example: Stopping rule
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Example: Apples to oranges

Consider estimating mean of

π = N

0, Λ =

 1 .5

.5 1


We will visualize the asymptotic covariance from

▶ Vanilla Monte Carlo (Λ)

▶ SNIS with

q = N

0,

 1.2 .5

.5 1.2


▶ Gibbs sampler

The form of Λ, T , and Σ are known in closed form
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Example: Apples to oranges

The relative volumes of the confidence regions is essentially the ESS.
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ESSMCMC = .436n and ESSSNIS = 1.002n

19 / 21



Example: Apples to oranges

The relative volumes of the confidence regions is essentially the ESS.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Visualizing confidence regions: rho =  0.5

Component 1

C
om

po
ne

nt
 2

VMC
IS
MCMC

ESSMCMC = .436n and ESSSNIS = 1.002n

19 / 21



Conclusion

▶ We re-define ESS in importance sampling for improved
interpretability

▶ General framework for comparing different kinds of estimators

▶ Of course, now one can also do ESS/time

▶ More interesting examples in the paper

Paper: Agarwal, M., Vats, D., and Elvira, V. (2021). A principled
stopping rule for importance sampling, Electronic Journal of
Statistics, 2022

Thank you
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