Randomized lattice rules

Dirk Nuyens
NUMA, KU Leuven, Belgium

Joint work with Frances Kuo (UNSW Sydney)
and Laurence Wilkes (KU Leuven).

MCM

Sorbonne Université
Paris, France

June 2023

Lattice rules

Deterministic lattice rules

For f € H,, approximate the d-dimensional integral

I(f) := /[071](1 f(x)dx

by an n-point lattice rule with generating vector z € Z¢
1 zk mod n
sz(f) = ; Z f(n>
kEZn

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup |I(f) - Qn(f)‘
fEH
flla<1

Deterministic lattice rules

For f € H,, approximate the d-dimensional integral

I(f) := /[071](1 f(x)dx

by an n-point lattice rule with generating vector z € Z¢
1 zk mod n
sz(f) = ; Z f(n>
kEZn

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup |I(f) - Qn(f)‘
fEHA
Iflla<1
~~ For good lattice rule Q, , converges like n=%||f]|,.

(Optimal. Bakhvalov.)

Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

~ Possible to get n=*~1/2||f||,. (Optimal. Bakhvalov.)

Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

~ Possible to get n=*~1/2||f||,. (Optimal. Bakhvalov.)

How?

Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

~ Possible to get n=*~1/2||f||,. (Optimal. Bakhvalov.)

How?

Random shifting? Random generating vector? Random n?

Randomized lattice rules

Consider a random family of deterministic rules Q; := { Q¥ }..

Randomized error or worst-case expected error for f € H,:

e""(@p, Ha) = sup By [|/(f) — Q7 (F)I]
feHa
Iflla<1

~ Possible to get n=*~1/2||f||,. (Optimal. Bakhvalov.)
How?

Random shifting? Random generating vector? Random n?
What is necessary?

Function space

Korobov space of dominating mixed smoothness o > 0:

hezd

Mo = {f € Lp([0,1]%) : [IF]2 := > r2(h) [F(h)P < oo},
with
ra(h) = ’YSTJ]';p(h) H |h.l‘a

Jj€supp(h)

Weighted spaces. . . (Sloan, Wozniakowski. . .)

Example of a good lattice rule

Example: n =21 and z = (1,13) (Fibonacci lattice rule)

\\\\\\\\\\\\‘\\\\\\\

\\\\\\\,\\\\\\\\\\\\

Constructive methods for deterministic error:
fast component-by-component (Nuyens & Cools 2006, . ..)
— Fixed vector z for a given n.

(Or sequence of n = p™, Cools, Kuo & Nuyens 2006).

Deterministic error

For f € H,, with a > 1/2, and

f(X) = Z)?(h) e27rih~x’ f(h) = / f(X) e—27rih‘x C|X,
hezd [0,1]

Deterministic error

For f € H,, with a > 1/2, and

=) f(n)emhx f(h) = / f(x)e 2" xdx,
[o.1)¢

hezd
we have
L e B O R DO
keZn [0,1]¢ 0#£hezd
h-z=0 (mod n)

by the character sum for Z,,, we have for a=z-h e Z,

% Z exp(2mik a/n) = 1{a =0 (mod n)}.

kE€Zp

The good set

Define the “good set” of generating vectors for a prime p as

4
G(p) _ e Zd : edet Q S inf = I’;l//\ h
- (p,z) XE[1/2,a) \ P O#%Zd ()

The good set

Define the “good set” of generating vectors for a prime p as

4
G(p) _ e Zd : edet Q S inf = I’;l//\ h
- (p,z) XE[1/2,a) \ P O#%Zd ()

This set has more than [3 p?] elements due to
2

id > [edet(Qp,z)} < S o MA(h), YA€[1/2,0),

zeZd P 0#£hezd

and Markov's inequality.

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . i

e “Dual lattice”> h=0 (mod n):

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . i

e “Dual lattice”> h=0 (mod n):

-12 -8 -4 12 h

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . i
8 i

e “Dual lattice” h=0 (mod n):

—12 -8 —4 12 h

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . ‘i
8 i

e “Dual lattice” h=0 (mod n):

—12 -8 —4 12 h
—10 -5 10 h

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . ‘i
8 i
8 ‘i

e “Dual lattice h=0 (mod n):

—12 -8 —4 12 h

—10 -5 10 h

One-dimensional intuition

e “Lattice points” xx = k/n, k € Z,, for n =4,5,6:
8 . . . ‘i
8 i
8 ‘i

e “Dual lattice h=0 (mod n):

—12 -8 —4 12 h
—10 -5 10 h
—12 —6 12 h

One-dimensional intuition

e “Lattice points™ xx = k/n, k € Z,, for n =4,5,6:

8 . . . 1
8 ‘i
8 ‘i
e “Dual lattice™ h=0 (mod n):
—12 -8 —4 12 h
—10 =5 10 h
—12 —6 12 A
[]

([] []

|| .\ | ? | \..\\. I I I | \.?\. | .\ | ? ||
T esa 61 456 6 1012 b

Zoom out a bit

300 g 52 6 456 & 1012 h

&=
Lo
¢
)
3
(@]
£
o
(@]
N

Tl 64 0 456 61012 h

h

30

12

0

Zoom out a bit

[J
[] [
[J [J [N N J [N N J [] [J
m T N T R R e
0\ 1 1 17T \1\2\ T 1T \3\0\ T h
0 12 30 120 h

Prior art

e Bakhvalov (1961): lower and upper bounds using lattice rules
for randomized error.

o Kritzer, Kuo, Nuyens, M. Ullrich (2019): randomised algorithm
using lattice rules to achieve the near optimal rate.

Algorithm 1 [KKNU19]
Uniformly sample a prime p € P,,.

Uniformly sample a generating vector z € G(P),
Use the lattice rule with generating vector z and p sample points.

10

Modifying the good set to allow for CBC construction

Define

2X

G 4
Gl =QzseZy 6F0(z) < inf | = S rVA(h)
’ ’ rell/2,0) | p ,
0£heZ

hy#0

This has more than E p] elements by a similar method to before.

Depends on the previously fixed values of 2/ = (z1,...,24_1).

11

CBC randomised algorithm

Dick, Goda and Suzuki (2022): component-by-component method.

Algorithm 2 [DGS22 / ..
Uniformly sample a prime p € P,,.
for j=1toddo

Uniformly sample z; € g(spz)/'

end for

Use the lattice rule with generating vector z and p sample points.

12

Existence of a fixed vector method

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

13

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n=®~1/27 Yes

13

Existence of a fixed vector method

Is it possible to fix the vector prior to the algorithm? Yes!

And have the error converge like n=®~1/27 Yes

Define the algorithm KJ :

Algorithm 5 Fixed vector random algorithm (Kuo, Nuyens, Wilkes)

Uniformly sample p € P,,.
Apply the lattice rule with the predefined z and p sample points.

13

Existence result

Theorem (Kuo, Nuyens, Wilkes)
There exists a vector z € Z9 which achieves the bound

ran * C)\ In(n) —1/A
e (Kn2) = — i Y. A (h)
0#hezd

forall%g)\<a.
For the proof:
We take z € Z§, with N := [ep, P-

We average over all vectors which are good in the deterministic
sense for all of the primes.

14

1. The vectors involved have incredibly large components.

15

1. The vectors involved have incredibly large components.

e Use Chinese remainder theorem:

Zn = Q) Zp.

pEP;,

15

1. The vectors involved have incredibly large components.

e Use Chinese remainder theorem:

Zn = Q) Zp.

pEP;,

e The generating vector is only ever considered modulo one of the
primes in P,. We break down the vector z into multiple vectors,

z (2P 2P,

15

1. The vectors involved have incredibly large components.

e Use Chinese remainder theorem:

Zn = Q) Zp.

pEP;,

e The generating vector is only ever considered modulo one of the
primes in P,. We break down the vector z into multiple vectors,

7o (Z(Pl)’ e z(pL))_
2. Existence, but what about construction?

15

CBC construction of the vector

What about the usual method?

We follow the standard CBC approach. If z; is a component yet to
be fixed, we can write

[(K:)] = [(K}]2 + ©(za).

16

What about the usual method?

We follow the standard CBC approach. If z; is a component yet to
be fixed, we can write

[(K:)] = [(K}]2 + ©(za).

If we were to try to minimise ©(z4) at each dimension, we would
have to search all possibilities that z4 could take.

This would be an O(dn"*3) algorithm!

16

Instead, we define a quantity T(p)(zc(,p)) which satisfies

z T(P)

pEP,

O(zg) =

PP

17

Instead, we define a quantity T(p)(zc(,p)) which satisfies

z T(P)

pEP,

O(zg) =

IP 2

The quantity Tp(zc(,p)) = T0)(2, {z‘(jr)}r<p; zc(,p)) is cleverly
rewritten so as to not depend on the value of z((,q) for any g > p.

17

Instead, we define a quantity T(p)(zc(,p)) which satisfies

z T(P)

pEP,

O(
(za) |P 2

The quantity Tp(zc(,p)) = T0)(2, {z‘(jr)}r<p; zc(,p)) is cleverly
rewritten so as to not depend on the value of z((,q) for any g > p.

This allows us to fix the residues of the component zy modulo each

of the primes in P, in increasing order. This uniquely sets the value
of zq € L.

17

Constructing the vector

Algorithm 6 Optimal vector construction at n (Kuo, Nuyens, Wilkes)

for j=1to d do
for p € P, in increasing order do
Compute HJ(p)(zj(p)) for all zJ-(p) € Zp.
Compute Tj(p)(zj(p)) for all (P € Zp.

J
Choose from the [7p] best choices for ngp) to minimize Tj(p).

end for
end for

e Calculating the randomised error of an arbitrary vector
takes O(dn*In(n)~2).
e The complexity of this construction algorithm is only O(dn*)

for product weights.
18

Randomised error vs deterministic error for a = 1,

d

We use product weights v = {j73}5_;.

Error = 1/n"(1+1/2)
=== Error=1/n"1

Randomised Error

—8— Randomised alg: gradient = -1.36
—e— CBC: gradient = -0.97

T T
10? 10%
n

e The deterministic algorithm is Q, , for z chosen by CBC.

e The randomised algorithm is K77 , with z chosen via the
described method.

19

Randomised error vs deterministic error for o = 2,

i — [;-3\d
We use product weights v = {j"}7_;.
Error = 1/n"(2+1/2)
—=- Ermor =1/n"2
1074
g
i
]
&
E
=)
2 108
3
3
5| Randomised alg: gradient = -2.3
1079 _o cae: gradient = -1.81

T T
10? 10%
n

e The deterministic algorithm is Q, , for z chosen by CBC.

e The randomised algorithm is K77 , with z chosen via the
described method.

20

Conclusions

e Fixed vector algorithm:

Theorem
Fora > 1/2 and all A € [1/2,«):

rans ok C, Inn)t/2
(k) < A g O

e For a € (0,1/2]: the usual trick does not work since we want a
fixed vector z.

e Solved by relaxing the sup in the error bound:

Theorem
Fora> 0 and all A € (0,), r € N and r > 1/(2)):

@

rMS [pook 1 Gr |n(n) e A
(Kn,z < A+ (r—1)/(2r) <C1 |n(r+1)> (:U*d,a,‘Y()‘)) C

21

Thanks for listening!

22

	Lattice rules
	Prior art
	Existence of a fixed vector method
	CBC construction of the vector

