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Context: UiT approximations

I Suppose Xt solves a (one-dimensional, elliptic) SDE

dXt = b(Xt ) dt + σ(Xt ) dWt , X0 = x ,

I Let Yt be ”some approximation”, for example numerical
approximation Y δ

t

I We want sufficient criteria to guarantee∣∣Ef (Xt )− Ef (Y δ
t )
∣∣ ≤ K δ, ∀f ∈ Cb(R)

with K independent of time (but dependent on f ).
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Some words of warning

I This is not always possible! Whether it is possible or not depends
on

1. The dynamics to approximate
2. The approximation

I I am not considering time-averages (though you get them as a
consequence - modulo having an invariant measure)

I I don’t necessarily want to approximate the invariant measure, I
want to approximate the law at time t , for every t > 0
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How do we go about this?



Setting

dXt = b(Xt ) dt + σ(Xt ) dWt , X0 = x .

I Ef (X x
t ) =: u(t , x)

u(t , x) = (Pt f )(x) Markov semigroup

I u(t , x) solves a PDE

∂tu(t , x) = Lu(t , x) u(0, x) = f (x) .

L = b(x)∂x +
1
2
σ2(x)∂xx
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General Approach

Ef (Xt )− Ef (Y δ
t )

= (Pt f )(x)− (Pδt f )(x)

=

∫ t

0
dsPδt−s(L − Lδ)Psf (x , y)

≤
∫ t

0
‖(L − Lδ)(Psf )‖∞ds

' δ

∫ t

0
‖∂2

x (Psf )‖∞ds
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Key stability condition

|∂x (Pt f )(x)| ≤ ce−λt for some λ > 0 (DE)

I if the above is true then∣∣Ef (Xt )− Ef (Y δ
t )
∣∣ ” ≤ ”δ

∫ t

0
‖∂2

x (Psf )‖∞ds ≤ δ K
∫ t

0
e−λsds ≤ δK .

I Why is this a stability condition?∫ `

0

d
du

(Pt f )(γ(u))du = (Pt f )(y)− (Pt f )(x) =

∫ `

0
(∂xPt )(γ(u))du
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Averaging
I Fast-slow dynamics, (Xt ,Yt ) ∈ Rd × Rn

dXt = f (Xt ,Yt )dt + g(Xt ,Yt )dWt

dYt =
1
ε

h(Xt ,Yt )dt +
1√
ε
σ(Xt ,Yt )dBt , 0 < ε� 1 .

I Limiting dynamics

dX̄t = F (X̄t )dt + G(X̄t )dWt

where

F (x) =

∫
f (x , y)µx (dy), G(x) =

∫
g(x , y)µx (dy)

I Conceptual problems in practice if you don’t have UiT
approximation
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I Associated Poisson equation:

(Lx f )(x , y) = ϕ(x , y)

I Lx is the generator of the fast process

dYt = h(Xt ,Yt )dt + σ(Xt ,Yt )dBt

namely
Lx f = h(x , y)∂y f + σ2(x , y)∂yy f



Lx f = ϕ

I Representation formula

f (x , y) =

∫ ∞
0

(Px
t ϕ)(y)dt

I smoothness of solution, in both x and y
I quantify how solution f (x , y) varies as x varies - similarly for µx



Multiscale Problems for Interacting Particle Systems

I Particle system interacting with fast network

dX i
t = −∇V (X i

t )dt +
∑
j 6=i

Aεij (t)K (X i
t − X j

t )dt +
√

2DdBi
t , i = 1...N

dAεij (t) = −Aεij (t−)dNd,ε
ij (t) + [1− Aεij (t−)]1{|X i

t−X j
t |≤R}dN f ,ε

ij (t)

I Main features:
I large number of particles N → ∞ and fast network evolution ε → 0
I the network is sparse, i.e. the interaction is not of mean-field type
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Are Derivative estimates hard to obtain?

By now various simple criteria
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