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General setting



Notation

The measure µ has associated density ψ

A† denotes the L2-adjoint of the operator A, i.e.∫
(Aφ)ϕ =

∫
φ(A†ϕ), ∀φ, ϕ ∈ C∞

0

A∗ denotes the L2(ψ)-adjoint of the operator A, i.e.∫
(Aφ)ϕψ =

∫
φ(A∗ϕ)ψ, ∀φ, ϕ ∈ C∞

0

Renato Spacek Paris, 2023 3 / 24



Physical context and motivation
Transport coefficients are quantitative estimates.

Example (thermal conductivity): Fourier’s law

J = −κ∇T

Long computational times to estimate κ; can take up to weeks/months.
Renato Spacek Paris, 2023 4 / 24



Nonequilibrium framework

Setting: X = Td, nongradient force F , periodic C∞ potential V

Overdamped Langevin dynamics

dqt = (−∇V (qt) + ηF (qt)) dt+

√
2

β
dWt

Generator Lη = L0 + ηL̃phys, with

L0 = −∇V T∇+ β−1∆, L̃phys = FT∇

Invariant probability measure ψη solves the Fokker–Planck

L†
ηψη = 0, ψ0(q) =

1

Z
e−βV (q)

The perturbation ηF (q) induces a response Eη(R) for some observable R(q). For
small η, the response is linear in η (linear response regime).
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Illustration - linear response
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Fitted linear response

Linear response formally defined as

ρ1 = lim
η→0

Eη(R)− E0(R)

η
= lim

η→0

Eη(R)

η
= lim

η→0

1

η

∫
X
Rψη
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Assumptions

1 Uniqueness of the invariant probability measure, trajectorial ergodicity.

1

t

∫ t

0

R(qηs ) ds
a.s.−−−−→

t→+∞
Eη(R) :=

∫
X
Rψη

2 Lyapunov estimates

3 Stability of regular functions by inverse operators

4 Stability of regular functions by the perturbation operator

Regular: smooth functions that (and whose derivatives) grow at most polynomially
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Expansion of the invariant measure

Although unique, ψη has closed form unknown

Perturbative regime:1 Write ψη as a perturbation of ψ0

ψη = fηψ0,

with fη a perturbation of the constant function 1:

fη = 1+ ηf1 + η2f2 + · · ·

Formal asymptotics on the Fokker–Planck (L0 + ηL̃phys)
†ψη = 0 leads to

−L∗
0f1 = L̃∗

phys1, fn+1 = (−L∗
0)

−1 L̃∗
physfn

1T. Lelièvre and G. Stoltz, Acta Numerica 25, (2016)
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(Non)linear response

Since ψη = fηψ0, write ρ1 as

ρ1 = lim
η→0

1

η

∫
X
Rψη = lim

η→0

1

η

∫
X
Rfη ψ0 =

∫
X
Rf1 ψ0

More generally, the n-th order response is given by

ρn =

∫
X
Rfn ψ0

Full response can be written as a polynomial in η

r(η) = Eη(R) = ηρ1 + η2ρ2 + η3ρ3 + · · ·
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Estimating linear response - variance vs bias

Estimator of linear response

ρ̂η,t =
1

ηt

∫ t

0

R(qs) ds
a.s.−−−−→

t→+∞

1

η

∫
X
Rfη ψ0 = ρ1 +O(η)
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Fitted linear response Main issue: Statistical error with
asymptotic variance O(η−2)

Idea: Reduce variance by increasing η,
but at which values of η does the
nonlinear response develop?

Goal: Want to stay in the linear regime
for η as large as possible.
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Optimizing the perturbation
Synthetic forcings



Optimizing the perturbation

Idea: Introduce perturbation with generator L̃extra, where

L̃∗
extra1 = 0

Resulting dynamics has generator

Lη = L0 + η(L̃phys + αL̃extra)

The resulting perturbation is called a synthetic forcing 2.

With the addition of the extra forcing, f1 remains unchanged

f1 = −L−1
0 (L̃phys + αL̃extra)

∗1

= −L−1
0 L̃∗

phys1

2Evans, Morriss, (2008)
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Illustration - effect of synthetic forcing
In theory, we can find some L̃extra that extends the linear regime
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Classes of synthetic forcings

1 First-order differential operators L̃extra = GT∇x, with div(Gψ0) = 0.

2 Second-order differential operators of the form L̃extra = −∂∗xi
∂xi

. In this case,
the operator is self-adjoint, i.e. L̃extra = L̃∗

extra.

3 First-order differential operators with nontrivial zero order parts, such as
L̃extra = ∂∗xi

= ∂xi
U − ∂xi

for ψ0(x) = e−U(x).
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Examples of synthetic forcings (overdamped Langevin)
Example 1: Divergence-free vector field{

L̃extra = G(q)T∇, such that div(Ge−βV ) = 0

dqt = −∇V (qt) dt+ ηF (qt) dt+ αηG(qt) dt+ σ dW

Example 2: Modified fluctuation-dissipation
L̃extra = −β−1∇∗∇ = −∇V T∇+ β−1∆

dqt = −(1 + αη)∇V (qt) dt+ ηF (qt) dt+

√
2(1 + αη)

β
dW

Example 3: Feynman–Kac forcing
L̃extra = ξT∇∗ = −ξT∇+ ξT∇V
dqt = −∇V (qt) dt+ ηF (qt) dt− ηαξ dt+ σdW

ωt ∝ exp

(
αη

∫ t

0

ξTV (qs) ds

)
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Examples of synthetic forcings (Langevin dynamics)
Example 1: Divergence-free vector field L̃extra = GT

1 ∇q +GT
2 ∇pdqt =M−1pt dt+ αηG1(qt, pt) dt,

dpt = −∇V (qt) dt+ η(F (qt) + αG2(qt, pt)) dt− γM−1pt dt+

√
2γ

β
dWt.

Example 2: Modified fluctuation-dissipation L̃extra = −β−1∇∗
q∇q − β−1∇∗

p∇p
dqt =M−1pt dt− αη∇V (qt) dt+

√
2αη

β
dBt,

dpt = (−∇V (qt) dt+ ηF (qt)) dt− (γ + αη)M−1pt dt+

√
2(γ + αη)

β
dWt.

Example 3: Feynman–Kac forcing L̃extra = ξ1(p)
T∇∗

q + ξ2(q)
T∇∗

pdqt =M−1pt dt− αηξ1(pt) dt,

dpt = −∇V (qt) dt+ η(F (qt)− αξ2(qt)) dt− γM−1pt dt+

√
2γ

β
dWt,
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Choosing magnitude of perturbation

Recall: Response as a polynomial in η

rα(η) = Eη,α(R) = ηρ1 + η2ρ2(α) + η3ρ3(α) + · · ·

First approach: Choose α s.t. the second-order response is killed:

ρ2(α
⋆) = 0

Second approach: Choose α s.t. δα(η) < ε for as long as possible,
namely α⋆(ε), where

δα(η) =

∣∣∣∣rα(η)− ρ1η

ρ1η

∣∣∣∣ .
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Numerical illustration



Choosing the observable

Setting: Overdamped Langevin dynamics in 1D, potential V (q) = cos(2πq). We
consider the observable

R(q) = (a cos(2πq) + b sin(2πq)) eβV (q)

where a, b ∈ R.

b is chosen such that ρ1 = 1, i.e.,

b =

(
Z−1

∫
X
sin(2πq)f1(q) dq

)−1

, Z =

∫
X
e−βV (q)dq

Similarly, a can be chosen such that ρ2 is arbitrarily large.

For nonsymmetric potentials, the above still gives ρ1, ρ2 ∼ O(1).
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Numerical illustration: modified FD
α⋆ = 1.0, α⋆(ε = 0.05) = 0.639
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Numerical illustration: div-free vector field
α⋆ = −0.835

0.0 0.2 0.4 0.6 0.8 1.0

Forcing

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A
ve
ra
ge

re
sp
on
se

Divergence-free vector field

Value of α
0.0

-0.5

-0.835

-1.0

Renato Spacek Paris, 2023 19 / 24



Numerical illustration: Feynman–Kac forcing
α⋆ = 1.187
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Numerical illustration: all forcings
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Numerical illustration: variance reduction (1)
Asymptotic variance σ2

R,η same order as σ2
R,0, up to small bias O(η):

σ2
R,η

η2
=
σ2
R,0

η2
+O

(
1

η

)
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Numerical illustration: variance reduction (2)

Define the gain as

gain =

(
σ2
R,η0(ε)

η0(ε)2

)(
σ2
R,ηα(ε)

ηα(ε)2

)−1

.

"ratio of the variances of physical system to the synthetic system"

Dynamics Extra forcing
none MFD FK DF (eV ) DF (A∇V )

Ovd. 1D 1 6.56× 102 1.58× 103 1.28× 105 -
Ovd. 2D 1 7.65× 102 3.23× 104 3.33× 103 4.03× 100

Lang. 1D 1 2.18× 103 1.29× 103 1.42× 103 -
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Future work and extensions

Promising method: Can reduce variance by several orders of magnitude

Potential applications: Lennard–Jones fluids (shear viscosity), systems of
atom chains (thermal transport)

Extension to actual MD systems: Transport coefficients are intensive
quantities, i.e. not dependent on system size
=⇒ Notion of preescreening: two small simulations with α1 ̸= α2, from

which optimal α can be extrapolated
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