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General setting



@ The measure y has associated density

e Af denotes the L2-adjoint of the operator A, i.e.

Jta0s= [waio), vooecy

@ A* denotes the L?(v))-adjoint of the operator A, i.e.

/ (Ap)oth = / S A, Vb€ O
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Physical context and motivation

Transport coefficients are quantitative estimates.

Example (thermal conductivity): Fourier's law

J=—rVT

J (energy current) ——3»

Long computational times to estimate «; can take up to weeks/months.
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Nonequilibrium framework

Setting: X = T¢, nongradient force F, periodic C*° potential V/

Overdamped Langevin dynamics

dg: = (=VV(q:) + nF(q)) dt + \/gth

Generator £, = Lo + r;fphys, with
Lo=-VVIV+BTIA,  Lows=FTV

Invariant probability measure 1, solves the Fokker—Planck

1 _
Livy =0,  4olg) = 7¢ v

The perturbation 7F'(¢) induces a response E, (R) for some observable R(q). For
small 7, the response is linear in 7 (linear response regime).
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Illustration - linear response
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Linear response formally defined as

= iy AL ) —lim = [ Ry, J
n—0 7 n—0 1 n=01n Jx
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@ Uniqueness of the invariant probability measure, trajectorial ergodicity.

1 t a.s.
— n > —
t/o R(q])ds —2>— B, (R) := /XRw,,

@ Lyapunov estimates
© Stability of regular functions by inverse operators

@ Stability of regular functions by the perturbation operator

Regular: smooth functions that (and whose derivatives) grow at most polynomially
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Expansion of the invariant measure

Although unique, 1, has closed form unknown
Perturbative regime:' Write v, as a perturbation of v
Uy = fotbo,
with f,, a perturbation of the constant function 1:
fo=14nf + 2+

Formal asymptotics on the Fokker—Planck (Lo + ﬂthys)Wn =0 leads to

—Lif1 = Lipgsls  fusr = (—L£5) 7 Lipyefn

'T. Leliévre and G. Stoltz, Acta Numerica 25, (2016)
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(Non)linear response

Since ¢, = f,90, write p; as

.1 .1
p=lin [ Ria=lin [ Rvvo= [ Rivde J
More generally, the n-th order response is given by

pn = /X Ri. o

Full response can be written as a polynomial in n

r(n) =E,(R) = np1 +n’p2 +0°ps + -+
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Estimating linear response - variance vs bias

Estimator of linear response

_ I ae
Pt = E/o R(qs)ds Fa— ;/Xan o = p1+ O(n)

—— Fitted lincar response ‘ Main issue: Statistical error with
T | asymptotic variance O (1~ ?)
N Idea: Reduce variance by increasing 7,
0 {1 but at which values of 7 does the
| nonlinear response develop?

Average response E, (R)

| Goal: Want to stay in the linear regime
for 7 as large as possible.
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Optimizing the perturbation
Synthetic forcings



Optimizing the perturbation

Idea: Introduce perturbation with generator Lextras Where
E:xtral =0
Resulting dynamics has generator
‘C'n =Lo+ 77( phys T aﬁextra)

The resulting perturbation is called a synthetic forcing 2.

With the addition of the extra forcing, f; remains unchanged

f1= _‘C_l(thys + aEextra)*]-

—Ly 1£phys

ZEvans, Morriss, (2008)
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Illustration - effect of synthetic forcing

In theory, we can find some Lextra that extends the linear regime
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Classes of synthetic forcings

@ First-order differential operators Lextra = GTV ., with div(Gg) = 0.

@ Second-order differential operators of the form Lexua = —0;. 0y, In this case,
the operator is self-adjoint, i.e. Eext,a = [Zext,a

© First-order differential operators with nontrivial zero order parts, such as
Lextra - 8 T — a U axl fOI’ 'IZ)O( ) U(I)

Renato Spacek Paris, 2023 13/24



Examples of synthetic forcings (overdamped Langevin)

Example 1: Divergence-free vector field

Loxa = G(q)TV, suchthat div(Ge #V) =0
dg = —VV (q)dt + nF(q) dt + anG(q) dt + o dW

Example 2: Modified fluctuation-dissipation

Lextra = _B_lv*v =-VVIv + ﬂ_lA

2(1+ an)

dge = —(1+ an)VV (gr) dt +nF(qr) dt + 3

aw

Example 3: Feynman—Kac forcing

Ze><tra = gTv* = _fTV + gTVV
dgy = —VV () dt + nF(q) dt — nag dt + odW

t
Wt O exp <Om/ "V (qs) d8>
0
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Examples of synthetic forcings (Langevin dynamics)

Example 1: Divergence-free vector field Lextra = GIv,+GIv,

dgr = M~ pydt + anGi(qi, pr) di,
2
dp, = —VV (qp) dt + n(F(q) + aGa(q, pr)) dt — vM~p, dt + /% AW,.

Example 2: Modified fluctuation-dissipation Zextra = fﬁflv;vq — 6*1V;Vp

dg; = M~ tpydt — anVV(q) dt + | —— dB,

2(y + an)

dpy = (=VV () dt + nF(q)) dt — (v 3

dW;.

Example 3: Feynman—Kac forcing Lextra = & (p)TVZ + £g(q)TV;

{th = M~1p,dt — ané (py) dt,

2
dpy = =VV(qe) dt +n(F(q:) — a&a(q)) dt — yM~'pdt + 4 | % dWr,
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Choosing magnitude of perturbation

Recall: Response as a polynomial in n

Ta(n) = Eyo(R) =np1 +10°p2(a) + n°ps(a) + - -

@ First approach: Choose « s.t. the second-order response is killed:
p2(a®) =0

@ Second approach: Choose a s.t. §,(n) < ¢ for as long as possible,
namely «, (¢), where
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Numerical illustration



Choosing the observable

Setting: Overdamped Langevin dynamics in 1D, potential V' (¢) = cos(2mq). We
consider the observable

R(q) = (acos(2mq) 4 bsin(2mq)) *V(@
where a,b € R.

@ bis chosen such that p; = 1,i.e,

-1
b= (Zl/XSin(27TQ)f1(Q)dQ> , Z:/Xe*/W(q)dq

@ Similarly, a can be chosen such that ps is arbitrarily large.

For nonsymmetric potentials, the above still gives p1, p2 ~ O(1).
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Numerical illustration: modified FD

o = 1.0, o (e = 0.05) = 0.639

Modified fluctuation-dissipation
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Numerical illustration: div-free vector field

o = —0.835
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Numerical illustration: Feynman—Kac forcing

o = 1.187

Feynman-Kac forcing
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Numerical illustration: all forcings
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Numerical illustration: variance reduction (1)

Asymptotic variance 0% , same order as 0% , up to small bias O(n):
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Numerical illustration: variance reduction (2)

Define the gain as

2 2 -1
gain = | Em@ ) (TRnae) )
Na(€)?

no(€)?

"ratio of the variances of physical system to the synthetic system"

Extra forcing

Dynamics

none MFD FK DF (¢") DF (AVV)
Ovd. 1D 1 6.56 x 10> 1.58 x 10> 1.28 x 10° -
Ovd. 2D 1 7.65 x 102 3.23 x 10*  3.33 x 10> 4.03 x 10°
Lang. 1D 1 2.18 x 10°  1.29 x 10®  1.42 x 103 -
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Future work and extensions

@ Promising method: Can reduce variance by several orders of magnitude

@ Potential applications: Lennard—Jones fluids (shear viscosity), systems of
atom chains (thermal transport)

@ Extension to actual MD systems: Transport coefficients are intensive
quantities, i.e. not dependent on system size
= Notion of preescreening: two small simulations with ; # a, from
which optimal « can be extrapolated
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