
PARTICLE ALGORITHMS FOR MAXIMUM LIKELIHOOD
ESTIMATION OF LATENT VARIABLE MODELS

Juan Kuntz (joint work with Jen Ning Lim and Adam Johansen)
The University of Warwick

More info: Kuntz, J., Lim, J. N., and Johansen, A. M. Particle algorithms for maximum likelihood training
of latent variable models. AISTATS 2023 (notable paper); PMLR 206:5134–5180.

EMPIRICAL BAYES

PROBLEM SETTING

Goal: Given some data y, infer some unobserved or latent variables x.

We use a probabilistic model pθ(x, y) relating x and y, that is defined
in terms of a vector of parameters θ:

pθ(x, y) ≥ 0 ∀θ ∈ Θ, x ∈ X , y ∈ Y,∫
X

∫
Y
pθ(x, y)dxdy = 1 ∀θ ∈ Θ.

Simplification: x and θ take values in Euclidean spaces.

Example: Toy hierarchical model
Data y = (y1, . . . , yD) ∈ RD and latent variables x = (x1, . . . , xD) ∈ RD,
where yd is a noisy observation of xd. Model defined by

Yd ∼ N (Xd, 1), Xd ∼ N (θ, 1), ∀d = 1, . . . ,D,

⇒ pθ(x, y) :=
D∏

d=1

1
2π exp

(
− (xd − θ)2

2 − (yd − xd)2
2

)
.

1

PROBLEM SETTING

Goal: Given some data y, infer some unobserved or latent variables x.

We use a probabilistic model pθ(x, y) relating x and y, that is defined
in terms of a vector of parameters θ:

pθ(x, y) ≥ 0 ∀θ ∈ Θ, x ∈ X , y ∈ Y,∫
X

∫
Y
pθ(x, y)dxdy = 1 ∀θ ∈ Θ.

Simplification: x and θ take values in Euclidean spaces.

Example: Toy hierarchical model
Data y = (y1, . . . , yD) ∈ RD and latent variables x = (x1, . . . , xD) ∈ RD,
where yd is a noisy observation of xd. Model defined by

Yd ∼ N (Xd, 1), Xd ∼ N (θ, 1), ∀d = 1, . . . ,D,

⇒ pθ(x, y) :=
D∏

d=1

1
2π exp

(
− (xd − θ)2

2 − (yd − xd)2
2

)
.

1

GENERATOR NETWORKS FOR UNSUPERVISED LEARNING

Many supervised and unsupervised learning techniques involve
latent variable models.

Example: Generator networks

Non-linear extensions of factor analysis.

Assume that each point in a dataset is generated by:

(A) sampling latent variables from an isotropic Gaussian prior,
(B) mapping them through a neural network,
(C) and adding Gaussian noise.

We consider their use for image datasets (MNIST and CelebA), where

• observed variables y: 1024 pixels per image,
• latent variables x: 64 per image,
• parameters θ: the network’s parameters (dimension ≈ 350, 000).

2

EMPIRICAL BAYES

Problem: Given data y, use model pθ(x, y) to infer latent variables x.

We approach it using the empirical Bayes (EB) paradigm:

(EB1) we search for parameters θ∗ that explain the data y well;
(EB2) we use θ∗ to infer, and quantify the uncertainty in, x.

More technically,

(EB1) we find a θ∗ maximizing the marginal likelihood,

pθ(y) :=
∫

pθ(x, y)dx;

(EB2) we obtain the corresponding posterior distribution,

pθ∗(x|y) :=
pθ∗(x, y)
pθ∗(y)

.

Maximummarginal likelihood: In some cases, our main interest is θ∗.

3

EMPIRICAL BAYES

Problem: Given data y, use model pθ(x, y) to infer latent variables x.

We approach it using the empirical Bayes (EB) paradigm:

(EB1) we search for parameters θ∗ that explain the data y well;
(EB2) we use θ∗ to infer, and quantify the uncertainty in, x.

More technically,

(EB1) we find a θ∗ maximizing the marginal likelihood,

pθ(y) :=
∫

pθ(x, y)dx;

(EB2) we obtain the corresponding posterior distribution,

pθ∗(x|y) :=
pθ∗(x, y)
pθ∗(y)

.

Maximummarginal likelihood: In some cases, our main interest is θ∗.

3

EXPECTATION MAXIMIZATION

EXPECTATION MAXIMIZATION

A well-known method for solving (EB1,2) is the expectation
maximization (EM) algorithm: starting from (θ0,q0), alternate

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

where ℓ(θ, x) := log(pθ(x, y)) denotes the log-likelihood and Θ the
parameter space.

Under general conditions,

θk → θ∗ and qk → pθ∗(·|y) as k → ∞,

where θ∗ is a stationary point of θ 7→ pθ(y) (i.e. ∇θpθ∗(y) = 0).

Issue: The (E,M) steps are intractable for many models.

Typical solutions:
• Approximate (E) using Monte Carlo.
• Approximate (M) using numerical optimization.

4

EXPECTATION MAXIMIZATION

A well-known method for solving (EB1,2) is the expectation
maximization (EM) algorithm: starting from (θ0,q0), alternate

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

where ℓ(θ, x) := log(pθ(x, y)) denotes the log-likelihood and Θ the
parameter space.

Under general conditions,

θk → θ∗ and qk → pθ∗(·|y) as k → ∞,

where θ∗ is a stationary point of θ 7→ pθ(y) (i.e. ∇θpθ∗(y) = 0).

Issue: The (E,M) steps are intractable for many models.

Typical solutions:
• Approximate (E) using Monte Carlo.
• Approximate (M) using numerical optimization.

4

EM AS COORDINATE DESCENT

EM is a well-known optimization algorithm applied to the free energy:

F(θ,q) :=
∫

log

(
q(x)

pθ(x, y)

)
q(x)dx ∀θ ∈ Θ, q ∈ P(X),

where P(X) := {probability distributions on the latent space X}.

Theorem (Neal and Hinton [1998])
pθ(y) has a maximum at θ iff F has a minimum at (θ,pθ(·|y)).

Proposition (Neal and Hinton [1998])
For any θ in Θ, the posterior pθ(·|y) minimizes q 7→ F(θ,q).

Hence, EM is coordinate descent applied to F:

(E) qk+1 := pθk(·|y), (M) θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

equals

(E) qk+1 := argminq∈P(X) F(θk,q), (M) θk+1 := argminθ∈Θ F(θ,qk+1).
5

EM AS COORDINATE DESCENT

Starting from (θ0,q0), alternate

(E) qk+1 := argminq∈P(X) F(θk,q), (M) θk+1 := argminθ∈Θ F(θ,qk+1).

6

JOINT UPDATES

Issue: The (E,M) steps are intractable for many models.

Possible solution: Apply a different optimization algorithm to F!

Observations
• Coordinate descent often outperforms first order methods.
• Unclear whether this is still the case when the coordinate

descent updates can only be computed approximately.
• Methods with joint rather than coordinate-wise updates?

From [Neal and Hinton, 1998]:
“... justifying... as well as algorithms in which the maximiza-
tion is done with respect to q and θ simultaneously.”

This idea has been taken up enthusiastically in the VI literature
where P(X) is restricted to tractable parametric subset (qϕ)ϕ∈Φ.

Question: Can we directly optimize over Θ× P(X) using, for
example, gradient descent (GD)?

7

JOINT UPDATES

Issue: The (E,M) steps are intractable for many models.

Possible solution: Apply a different optimization algorithm to F!

Observations
• Coordinate descent often outperforms first order methods.
• Unclear whether this is still the case when the coordinate

descent updates can only be computed approximately.
• Methods with joint rather than coordinate-wise updates?

From [Neal and Hinton, 1998]:
“... justifying... as well as algorithms in which the maximiza-
tion is done with respect to q and θ simultaneously.”

This idea has been taken up enthusiastically in the VI literature
where P(X) is restricted to tractable parametric subset (qϕ)ϕ∈Φ.

Question: Can we directly optimize over Θ× P(X) using, for
example, gradient descent (GD)?

7

JOINT UPDATES

Issue: The (E,M) steps are intractable for many models.

Possible solution: Apply a different optimization algorithm to F!

Observations
• Coordinate descent often outperforms first order methods.
• Unclear whether this is still the case when the coordinate

descent updates can only be computed approximately.
• Methods with joint rather than coordinate-wise updates?

From [Neal and Hinton, 1998]:
“... justifying... as well as algorithms in which the maximiza-
tion is done with respect to q and θ simultaneously.”

This idea has been taken up enthusiastically in the VI literature
where P(X) is restricted to tractable parametric subset (qϕ)ϕ∈Φ.

Question: Can we directly optimize over Θ× P(X) using, for
example, gradient descent (GD)?

7

PARTICLE GRADIENT DESCENT

GRADIENT DESCENT FOR f

Recall the GD algorithm for optimizing a function f : Rn → R,

zk+1 = zk − h∇f(zk) ∀k = 0, 1, . . . ,

where h > 0 denotes the step size.

8

GRADIENT FLOW FOR f

GD is the Euler discretization of the gradient flow:

żt = −∇f(zt) ∀t ≥ 0.

9

GRADIENT FLOW FOR F

We start with a gradient flow,

(θ̇t, q̇t) = −∇F(θt,qt) ∀t ≥ 0,

and discretize to obtain a practical algorithm.

Defining a notion of gradient for a functional on Θ×P(X) requires a
metric d. For practical reasons, we use

d((θ1,q1), (θ2,q2)) = d2(θ1, θ2) + dW2(q1,q2),

with

• d2 denoting the Euclidean metric on Θ and
• dW2 the Wasserstein-2 metric on P(X).

In which case, ∇F(θ,q) = (∇θF(θ,q),∇qF(θ,q)), where

∇θF(θ,q) = −
∫

∇θℓ(θ, x)q(x)dx,

∇qF(θ,q) = ∇x ·
[
q∇x log

(
pθ(·, y)

q

)]
.

10

GRADIENT FLOW FOR F

We start with a gradient flow,

(θ̇t, q̇t) = −∇F(θt,qt) ∀t ≥ 0,

and discretize to obtain a practical algorithm.

Defining a notion of gradient for a functional on Θ×P(X) requires a
metric d. For practical reasons, we use

d((θ1,q1), (θ2,q2)) = d2(θ1, θ2) + dW2(q1,q2),

with

• d2 denoting the Euclidean metric on Θ and
• dW2 the Wasserstein-2 metric on P(X).

In which case, ∇F(θ,q) = (∇θF(θ,q),∇qF(θ,q)), where

∇θF(θ,q) = −
∫

∇θℓ(θ, x)q(x)dx,

∇qF(θ,q) = ∇x ·
[
q∇x log

(
pθ(·, y)

q

)]
.

10

GRADIENT FLOW FOR F

The corresponding gradient flow (θ̇t, q̇t) = −∇F(θt,qt) reads

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = ∇x ·

[
qt∇x log

(
qt

pθt(·, y)

)]
.

Sanity checks [Kuntz et al., 2023]

Theorem (F’s stationary points relate to pθ(y)’s)
∇F(θ,q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Theorem (Exponential convergence under strong concavity)
If the log likelihood ℓ is strongly concave, for some λ > 0

∇2ℓ(θ, x) � −λIDx+Dθ
∀(θ, x) ∈ Θ×X ,

then the marginal likelihood has a unique maximizer θ∗ and

||θt − θ∗|| = O(e−λt) and ||qt − pθ∗(·|y)||L1 = O(e−λt).

11

PARTICLE GRADIENT DESCENT

Discretizing the gradient flow, we obtain particle gradient descent:

(1) Choose the step size h > 0 and particle number N > 0, and run

Θk = Θk−1 +
h
N

N∑
n=1

∇θℓ(Θk−1, Xnk−1), ∀k ∈ [K] := {1, . . . , K},

Xnk = Xnk + h∇xℓ(θk−1, Xnk−1) +
√
2hWn

k−1, ∀n ∈ [N], k ∈ [K],

where (Wn
k)k∈[K−1],n∈[N] denote independent standard normal r.v.s., in

which case

Θk ≈ θkh,
1
N

N∑
n=1

δXnk ≈ qkh, ∀k > 0.

(2) Estimate a stationary point θ∗ of the marginal likelihood
θ 7→ pθ(y) and its corresponding posterior pθ∗(·|y) using

θ∗ ≈ ΘK, pθ∗(·|y) ≈
1
N

N∑
n=1

δXnK . 12

PARTICLE GRADIENT DESCENT

Particle gradient descent:

• runs N > 0 ULA chains in tandem with an SGD-like recursion;
• avoids accept-reject steps;
• only requires evaluating gradients of ℓ(θ, x) = log(pθ(x, y));
• its cost is O(N[eval. cost of ∇ℓ]);
• computations can be vectorized across N;
• in big-data settings, we replace ∇ℓ with estimates thereof;
• we improve performance by adapting step sizes.

In short, PGD trains large latent variable models without resorting to
variational inference.

Example: Generator networks
We

• fit the model using PGD,
• 10, 000 (MNIST) and 40, 000 (CelebA) training images,
• and a Google Colab subscription.

13

PARTICLE GRADIENT DESCENT

Particle gradient descent:

• runs N > 0 ULA chains in tandem with an SGD-like recursion;
• avoids accept-reject steps;
• only requires evaluating gradients of ℓ(θ, x) = log(pθ(x, y));
• its cost is O(N[eval. cost of ∇ℓ]);
• computations can be vectorized across N;
• in big-data settings, we replace ∇ℓ with estimates thereof;
• we improve performance by adapting step sizes.

In short, PGD trains large latent variable models without resorting to
variational inference.

Example: Generator networks
We

• fit the model using PGD,
• 10, 000 (MNIST) and 40, 000 (CelebA) training images,
• and a Google Colab subscription. 13

IMAGE SYNTHESIS

CelebAMNIST

Figure 1: Synthesized images obtained using the generator trained with PGD.

14

IMAGE RECONSTRUCTION

CelebAMNIST

Original Masked Inpainted Original Masked Inpainted

Figure 2: Images reconstructed using the generator trained with PGD.

15

THANK YOU FOR YOU TIME.
QUESTIONS?

15

THREE INTRACTABILITIES

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (1)

Three intractabilities:

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solution: (1) is the a McKean-Vlasov Fokker-Planck equation
satisfied by the law of the following McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.

THREE INTRACTABILITIES

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (1)

Three intractabilities:

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solution: (1) is the a McKean-Vlasov Fokker-Planck equation
satisfied by the law of the following McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.

TWO INTRACTABILITIES

McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

Two intractabilities:

(1) The continuous time axis.
(2) The integral over X .

Solution: Generate N > 0 particles X1t , . . . , XNt with law qt by solving

dXnt = ∇xℓ(θt, Xnt)dt+
√
2dWn

t ∀n ∈ [N] := {1, . . . ,N},

with W1, . . . ,WN denoting N independent Brownian motions, and use

qt ≈
1
N

N∑
n=1

δXnt ⇒
∫

∇θℓ(θt, x)qt(x)dx ≈
1
N

N∑
n=1

∇θℓ(θt, Xnt).

ONE INTRACTABILITY

SDE:

dΘt =

[
1
N

N∑
n=1

∇θℓ(Θt, Xnt)
]
dt,

dXnt = ∇xℓ(Θt, Xnt)dt+
√
2dWn

t ∀n ∈ [N].

One intractability: The continuous time axis.

Solution: Discretize using Euler-Maruyama with step size h > 0,

Θk+1 = θk +
h
N

N∑
n=1

∇θℓ(Θk, Xnk), ∀k ∈ [K],

Xnk+1 = Xnk + h∇xℓ(Θk, Xnk) +
√
2hWn

k ∀n ∈ [N], k ∈ [K],

where (Wn
k)k∈[K−1],n∈[N] denote independent standard normal r.v.s.

VARIATIONAL INFERENCE

Choose a tractable parametric family Q := (qϕ)ϕ∈Φ ⊆ P(X) and solve

(θ∗, ϕ∗) = argmin
(θ,ϕ)∈Θ×Φ

F(θ,qϕ)

using an appropriate optimization algorithm.

General idea: If Q is rich, then (θ∗,qϕ∗) will be close to an optimum
of (θ,q) 7→ F(θ,q) if (θ∗, ϕ∗) is an optimum of (θ, ϕ) 7→ F(θ,qϕ).

Issues

• How rich does Q need to be?
• We are interested in optimizing over (θ,qϕ) in Θ×Q rather than
(θ, ϕ) in Θ× Φ. Hence, naively applying an optimization
algorithm to (θ, ϕ) 7→ F(θ,qϕ) can lead to trouble.

PARTICLE GRADIENT DESCENT: BEHAVIOUR

Given the analogy between PGD and (stochastic) gradient descent,
we expect that:

(C1) If the step size h is set too large, PGD will be unstable.
(C2) Otherwise, after a transient phase,

θk ≈ θ∗, qk ≈ pθ∗(·|y), lim
k→∞

θ̄k = θ∗, lim
k→∞

q̄k = pθ∗(·|y),

for some stationary point θ∗ of pθ(y), where

θ̄K :=
1
K

K∑
k=1

θk, q̄K :=
1
K

K∑
k=1

qk, with qk :=
1
N

N∑
n=1

δXnk .

(C3) Small hs lead to long transient phases but low estimator
variance in the stationary phase.

Asymptotic bias: (θ̄k, q̄k) does not converge exactly to (θ∗,pθ∗(·|y)),
but instead to a point in its vicinity.

• The bias vanishes as N → ∞ and h → 0.

PARTICLE GRADIENT DESCENT: BEHAVIOUR

Given the analogy between PGD and (stochastic) gradient descent,
we expect that:

(C1) If the step size h is set too large, PGD will be unstable.
(C2) Otherwise, after a transient phase,

θk ≈ θ∗, qk ≈ pθ∗(·|y), lim
k→∞

θ̄k = θ∗, lim
k→∞

q̄k = pθ∗(·|y),

for some stationary point θ∗ of pθ(y), where

θ̄K :=
1
K

K∑
k=1

θk, q̄K :=
1
K

K∑
k=1

qk, with qk :=
1
N

N∑
n=1

δXnk .

(C3) Small hs lead to long transient phases but low estimator
variance in the stationary phase.

Asymptotic bias: (θ̄k, q̄k) does not converge exactly to (θ∗,pθ∗(·|y)),
but instead to a point in its vicinity.

• The bias vanishes as N → ∞ and h → 0.

TOY HIERARCHICAL MODEL

Recall our starting example:

Yd ∼ N (Xd, 1), Xd ∼ N (θ, 1), ∀d = 1, . . . ,D,

pθ(x, y) :=
D∏

d=1

1
2π exp

(
− (xd − θ)2

2 − (yd − xd)2
2

)
.

50 100 150 200 2500

1
5

2
5

3
5

4
5

1

k 5 10 15 20 250

1
5

2
5

3
5

4
5

1

PGD
PQN

PMGD
EM

Algorithm

Pa
ra

m
e
te

r
e
st

im
a
te

s

Figure 3: Parameter estimates with D = 100 latent variables and N = 10
particles. (LHS) PGD, PQN, PMGD, and EM estimates with well chosen h and
averaging over k once the estimates reach stationarity. (RHS) First 30 steps.

BENCHMARK: SOUL ALGORITHM [DE BORTOLI ET AL., 2021]

Alternating coordinate-wise cousin of PGD:

• Approximates the (E) step by running the unadjusted Langevin
algorithm (ULA) targetting the current posterior:

pθk(·|y) ≈
1
N

N∑
n=1

δXnk

where

X0k = XNk−1, Xn+1
k = Xnk + h∇xℓ(θk, Xnk) +

√
2hWn

k ∀n ∈ [N− 1].

• Approximates the (M) step using a stochastic gradient step:

θk+1 = θk +
h
N

N∑
n=1

∇θℓ(θk, Xnk).

MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

We consider

• a scaled-down version of the MNIST classification task,
• involving 1000 data points with labels 4, 9 and an 80/20

training/testing split.

We apply

• a two layer Bayesian neural network,
• with isotropic Gaussian priors on the network’s weights.
• Latent variables: the network’s weights (dimension ≈ 30000).
• Parameters: the prior variances (dimension 2).

MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

Predictive performance

Table 1: Test errors achieved using the final particle cloud X1:N500 and
corresponding computation times (averaged over 10 replicates).

N = 1 N = 10 N = 100

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

PGD 7.45 ± 2.03 4.10 ± 0.26 3.20 ± 1.12 10.4 ± 1.2 2.45 ± 0.99 76.6 ± 0.4
PQN 7.45 ± 1.60 4.12 ± 0.21 3.45 ± 1.04 10.0 ± 0.2 2.34 ± 0.81 74.0 ± 0.3
PMGD 7.24 ± 1.75 3.27 ± 0.13 3.75 ± 1.38 9.12 ± 0.2 2.45 ± 0.81 72.1 ± 0.5
SOUL 6.25 ± 1.54 5.02 ± 0.20 7.25 ± 1.38 36.5 ± 0.1 6.85 ± 1.42 364.0 ± 5.3

MNIST CLASSIFICATION WITH A BAYESIAN NEURAL NETWORK

Gap in performance might be due to:

• SOUL particles are sequentially correlated,

Xn+1
k = Xnk + h∇xℓ(θk, Xnk) +

√
2hWn

k ∀n ∈ [N− 1].
• ⇒ its posterior approximations are narrower than PGD’s.

-10 0 105 15-5-15

P
ro
b
a
b
ili
ty

PGD

SOUL

PQN

PMGA

Figure 4: KDE of a randomly-chosen entry of the final cloud X1:100500 .

GENERATOR NETWORKS FOR IMAGE SYNTHESIS AND INPAINTING

We consider

• MNIST and CelebA image datasets
• with 10, 000 (MNIST) and 40, 000 (CelebA) training images.

We apply a generator model. It assumes that the images are
produced by:

(A) sampling latent variables from an isotropic Gaussian prior,
(B) mapping them through a convolutional neural network,
(C) and adding Gaussian noise.

• Latent variables: 64 per image (totals of 640, 000 and 2, 560, 000)
• Parameters: the network’s parameters (dimension ≈ 350, 000).

We fit the model using maximum likelihood and PGD (tweaked).

IMAGE SYNTHESIS

CelebAMNIST

Figure 5: Synthesized images obtained using the generator trained with PGD.

IMAGE RECONSTRUCTION

CelebAMNIST

Original Masked Inpainted Original Masked Inpainted

Figure 6: Reconstructed images obtained using the generator trained with
PGD.

SUMMARY

Advantages
• Applies to broad classes of models.
• Straightforward to implement and tune.
• Recycles posterior approximations.
• Scalable:

• No accept-reject steps.
• Low cost: O(KN[eval. cost of (∇θℓ,∇xℓ)]).
• Easy to parallelize/vectorize computations across particles.

Disadvantages
• Separate timescales: often, |[∇θℓ(θ, x)]i| � |[∇xℓ(θ, x)]j| for all i, j.
Solutions: Hack, particle quasi-Newton, particle marginal GD.

• Biased.
• Only returns stationary points.
• Requires Euclidean parameter and latent spaces.
• Requires differentiable densities.

OPEN DIRECTIONS

(A) Theoretical analysis.
(B) Variants:

• Big data versions with stochastic gradients à la SGD/SGLD.
• Decreasing h and/or increasing N with k:

• Robbins-Monro type conditions.
• Adaptive strategies à la Adagrad and its variants.
• Line searches.

• Better approximations to the gradient flow.
• Versions for Riemannian manifolds.

(C) Other optimization-inspired methods:
• Different geometries:

• Stein (leading to an extension of SVGD).
• Wasserstein-Kalman (leading to an extension of EKS).
• Better approximations to Newton’s method.

• Non-gradient-descent methods:
• Nesterov acceleration/momentum/underdamped Langevin.
• Proximal algorithms for non-differentiable models.
• Mirror descent.

(D) Other particle-based methods updating θ and q ‘jointly’:
• Metropolis-Hastings Algorithms.

REFERENCES I

REFERENCES

V. De Bortoli, A. Durmus, M. Pereyra, and A. Fernandez Vidal. Efficient
stochastic optimisation by unadjusted Langevin Monte Carlo.
Statistics and Computing, 31, 2021.

J. Kuntz, J. N. Lim, and A. M. Johansen. Scalable particle-based
alternatives to em. arXiv preprint arXiv:2204.12965, 2022.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Learning in Graphical
Models, pages 355–368. Springer Netherlands, 1998.

GENERATOR NETWORKS FOR IMAGE SYNTHESIS AND INPAINTING

Given a dataset of 32× 32 images y1:M := (ym)Mm=1 ⊆ R32×32.

Model which assumes that each image ym is independently
generated by:

1. drawing a (64-dimensional) latent variable xm from N (0, I);
2. mapping xm to the image space via a generator fθ : R64 → R32×32;
3. adding noise: ym = fθ(xm) + ϵm where (ϵm)Mm=1 is a sequence of

i.i.d. R.V.s with law N (0, 0.012I).

In full, the model’s density is given by

pθ(x1:M, y1:M) =
M∏

m=1
N (ym|fθ(xm), 0.012I)N (xm|0, I);

and

• fθ is a convolutional neural net with ≈ 350, 000 parameters,
• there are 640, 000–2, 560, 000 latent variables in total,
• we learn θ by maximizing the marginal likelihood pθ(y1:M) with

PGD (and a few tweaks).

LASALLE’S INVARIANCE PRINCIPLE

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
.

Note that

• dF(θt,qt)
dt = I(θt,qt) where

I(θ,q) :=
∣∣∣∣∫ ∇θℓ(θ, x)q(x)dx

∣∣∣∣2 + ∫ ∣∣∣∣∣∣∇x log
(

pθ(x,y)
q(x)

)∣∣∣∣∣∣2 q(x)dx.
• I ≥ 0. Hence, t 7→ F(θt,qt) is non-decreasing.
• Moreover, I(θ,q) = 0 iff ∇θpθ(y) = 0 and q = pθ(·|y).
• ⇒ if pθ(x, y) is s.t. F’s super-level sets are appropriately compact,

an extension of LaSalle’s Principle should yield that

(θt,qt) → {(θ∗,pθ(·|y)) : ∇θpθ(y) = 0} as t → ∞.

Assumption: the marginal likelihood’s super-level sets are bounded.

Because log(pθ(y)) = F(θ,pθ(·|y)),

{θ ∈ Θ : pθ(y) ≥ el} ⊆ {θ : F(θ,q) ≥ l for some q}.

THE BIAS

Two sources
(B1) h > 0. Discretizations of the Langevin diffusion do not preserve

stationary distributions, c.f. mean field limits in App.G.
(B2) N < ∞. Finite populations, c.f. continuum limits in App.H.

B1 can be mitigated by decreasing h and B2 by increasing N:

Particle number (N)
1 2 4 50 100

Optimal variance

0

1

5e3 10e3 15e3

V
a
ri

a
n

ce
 e

st
im

a
te

1
2

a

K

Step size (h)

0.0150.03
1/81/41/2

0

1

5e3 10e3 15e3

1
2

b

K

Figure 7: Toy hierarchical model, bias. PMGD posterior variance estimates
with D = 1 using the time-averaged posterior approximation q̄K and no
burn-in (kb = 0), as a function of K.

TIME-SCALE SEPARATION AND A HACK

For the toy hierarchical model,

∇θℓ(θ, x) =
D∑

d=1

[xd − θ], [∇xℓ(θ, x)]d = yd − xd − (xd − θ) ∀d,

⇒ |∇θℓ(θ, x)| � |[∇xℓ(θ, x)]d| ∀d.

This causes θk to evolve in a faster time-scale than the Xnks,

θk+1 = θk +
h
N

N∑
n=1

D∑
d=1

[Xnd,k − θk],

Xnd,k+1 = Xnd,k + h[yd + θk − 2Xnd,k] +
√
2hWn

d,k ∀d,n,

and makes PGD ‘ill-conditioned’.

It is straightforward to mitigate issue with a hack.

TIME-SCALE SEPARATION AND A HACK

For the toy hierarchical model,

∇θℓ(θ, x) =
D∑

d=1

[xd − θ], [∇xℓ(θ, x)]d = yd − xd − (xd − θ) ∀d,

⇒ |∇θℓ(θ, x)| � |[∇xℓ(θ, x)]d| ∀d.

This causes θk to evolve in a faster time-scale than the Xnks,

θk+1 = θk +
h
DN

N∑
n=1

D∑
d=1

[Xnd,k − θk] = θk + h
[
X̄k − θk

]
,

Xnd,k+1 = Xnd,k + h[yd + θk − 2Xnd,k] +
√
2hWn

d,k ∀d,n,

and makes PGD ‘ill-conditioned’, where X̄k := 1
DN

∑N
n=1

∑D
d=1 Xnd,k.

It is straightforward to mitigate issue with a hack.

PMGD

For some models the (M) step is tractable:

• For each q, θ 7→ F(θ,q) has a unique stationary point θ∗(q).
• We can evaluate θ∗(x1:N) := θ∗(q) whenever q = N−1 ∑N

n=1 δxn for
some x1:N = (x1, . . . , xN) in X N.

Consider the ‘marginal objective’: F∗(q) := F(θ∗(q),q) for all q.

Theorem (Kuntz et al. [2022])
θ = θ∗(q) and ∇F∗(q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Idea: Using gradient descent, find qminimizing F∗ and evaluate θ∗(q).

PMGD

For some models the (M) step is tractable:

• For each q, θ 7→ F(θ,q) has a unique stationary point θ∗(q).
• We can evaluate θ∗(x1:N) := θ∗(q) whenever q = N−1 ∑N

n=1 δxn for
some x1:N = (x1, . . . , xN) in X N.

Consider the ‘marginal objective’: F∗(q) := F(θ∗(q),q) for all q.

Theorem (Kuntz et al. [2022])
θ = θ∗(q) and ∇F∗(q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Idea: Using gradient descent, find qminimizing F∗ and evaluate θ∗(q).

PARTICLE MARGINAL GRADIENT DESCENT

Idea: Using gradient descent, find qminimizing F∗ and evaluate θ∗(q).

PMGD

Idea: Using gradient descent, find q minimizing F∗ and evaluate
θ∗(q). Using the Wasserstein-2 metric on P(X) leads to

∇F∗(q) = ∇x ·
[
q∇x log

(pθ∗(q)(·, y)
q

)]
.

Approximating the corresponding gradient-flow similarly as for PGD
then yields the particle marginal gradient descent (PMGD) algorithm:

Xnk+1 = Xnk + h∇xℓ(θk, Xnk) +
√
2hWn

k ∀n ∈ [N],

where

θk := θ∗(qk) with qk :=
1
N

N∑
n=1

δXnk .

NEWTON’S METHOD

Gradient descent works badly if f is ill-conditioned.

NEWTON’S METHOD

Gradient descent works well if f is well-conditioned.

NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).

NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).

NEWTON’S METHOD

f is well-conditioned if

f(z+ hv) ≈ f(z) + h 〈∇f(z), v〉+ h2

2 〈v, v〉+ o(h2).

Idea: If f is ill-conditioned, change the inner product 〈·, ·〉 so that it
becomes well-conditioned! By Taylor’s Theorem,

f(z+ hv) = f(z) + h 〈∇f(z), v〉+ h2

2
〈
Hf(z)v, v

〉
+ o(h2)

= f(x) + h
〈
[Hf(z)]−1∇f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

= f(x) + h
〈
∇̃f(z), v

〉
z +

h2

2 〈v, v〉z + o(h2),

where

Hf = (∂2f/∂zi∂zj)ij, 〈v, v〉z :=
〈
Hf(z)v, v

〉
, ∇̃f(z) := [Hf(z)]−1∇f(z).

Newton’s: Take steps following ∇̃f (i.e. the gradient under the
geometry that makes f isotropic).

PARTICLE QUASI-NEWTON

(A) Using a 2nd order expansion of F, identify an analogous inner
product and the corresponding gradient.

(B) Approximate until we get a tractable gradient.
(C) Define the corresponding gradient flow.
(D) Approximate the flow similarly as for PGD and PMGD.

Particle Quasi-Newton (PQN) Algorithm:

θk+1 = θk + h
[N∑
n=1

Hθ(Xnk)
]−1 N∑

n=1
∇θℓ(θk, Xnk), ∀k ∈ [K],

Xnk+1 = Xnk + h∇xℓ(θk, Xnk) +
√
2hWn

k ∀n ∈ [N], k ∈ [K].

DISCRETIZING THE FLOW

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (2)

Intractabilities

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solutions

(C) Eq. (2) is satisfied by the law of a McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
(B) Generate N i.i.d. copies X1t , . . . , XNt of Xt so that qt ≈ 1

N
∑N

n=1 δXnt .
(A) Discretize using Euler-Maruyama.

DISCRETIZING THE FLOW

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (2)

Intractabilities

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solutions

(C) Eq. (2) is satisfied by the law of a McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
(B) Generate N i.i.d. copies X1t , . . . , XNt of Xt so that qt ≈ 1

N
∑N

n=1 δXnt .
(A) Discretize using Euler-Maruyama.

DISCRETIZING THE FLOW

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (2)

Intractabilities

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solutions

(C) Eq. (2) is satisfied by the law of a McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
(B) Generate N i.i.d. copies X1t , . . . , XNt of Xt so that qt ≈ 1

N
∑N

n=1 δXnt .
(A) Discretize using Euler-Maruyama.

DISCRETIZING THE FLOW

Gradient flow:

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, q̇t = −∇x ·

[
qt∇x log

(
pθt(·, y)

qt

)]
. (2)

Intractabilities

(A) The continuous time axis.
(B) The integral over X .
(C) The PDE with domain X .

Solutions

(C) Eq. (2) is satisfied by the law of a McKean SDE:

dθt =
[∫

∇θℓ(θt, x)qt(x)dx
]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt,

where qt denotes Xt’s law and W a standard Brownian motion.
(B) Generate N i.i.d. copies X1t , . . . , XNt of Xt so that qt ≈ 1

N
∑N

n=1 δXnt .
(A) Discretize using Euler-Maruyama.

	Empirical Bayes
	Expectation maximization
	Particle gradient descent
	Appendix
	References

