
1/26

Periodic kernel-based
high-dimensional approximation

Ian H. Sloan

UNSW Sydney, Australia

MCM 2023

Joint work with Vesa Kaarnioja and Frances Kuo

June 30, 2023

2/26

The story

▶ Parametric PDE, with many parameters =⇒ high
dimensionality

▶ The standard approaches use multivariate polynomials

▶ But in high dimensions multivariate polnomials are very
expensive, unless sparsity is used

▶ The talk presents a case an efficient kernel method, needing
no sparsity, and allowing high dimensionality

3/26

The Parametric PDE Problem

Kaarnioja, Kazashi, Kuo, Nobile, IHS 2022 (KKKNS)

Kaarnioja, Kuo, IHS 2023 (KKS)

−∇ · (ã(x, z)∇ũ(x, z)) = q(x) x ∈ D

ũ(x, z) = 0 on ∂D, z ∈ [−1, 1]s ,

with D a bounded Lipschitz domain in Rd , d = 2, 3, and

ã(x, z) = a+
s∑

j=1

zj ψj(x) ≥ amin > 0, x ∈ D, z ∈ [−1, 1]s ,

where z1, . . . , zs are parameters representing independent random
variables distributed on [−1, 1] with probability density ρ(z).

Here we assume

ρ(z) = 1
π (1− z2)−1/2 (Chebyshev of 1st kind)

4/26

A periodic reformulation

Following Kaarnioja, Kuo, IHS (2020), we transform the field

ã(x, z) = a+
s∑

j=1

zj ψj(x), x ∈ D, z = (z1, . . . , zs) ∈ [−1, 1]s ,

with density
∏

j 1/(π
√

1− z2j) by sustituting zj = sin(2πyj), to get

a(x, y) := ã(x, sin(2π y)) := a+
s∑

j=1

sin(2πyj)ψj(x), x ∈ D,

with y = (y1, . . . , ys) ∈ [0, 1]s , and the yj iid uniformly
distributed on [0, 1].

The probabilty model is unchanged by the substitution!

5/26

The space Hα

We take Hα to be an “unanchored” weighted Sobolev space of
dominating mixed smoothness of order α ∈ N:

∥f ∥2Hα
=

∑
u⊆{1:s}

1

γu(2π)2α|u|

∫
[0,1]|u|

×

∣∣∣∣∣∣
∫
[0,1]s−|u|

∏
j∈u

∂α

∂yαj

 f (yu, y−u)dy−u

∣∣∣∣∣∣
2

dyu,

▶ yu denotes the components of y that belong to the subset u,

▶ y−u denotes the components that do not belong to u.

▶ The γu are “weights” – one for each subset u ⊆ {1 : s}.

6/26

Hα is a RKHS with kernel Kα:

Kα(y, y
′) =

∑
u⊆{1:s}

γu
∏
j∈u

ηα(yj − y ′j),

where {1 : s} = {1, 2, . . . , s}, ηα is a known periodic function of a
single variable, given by

ηα(y) =
∑
h ̸=0

e2πihy

|h|2α
,

For α an integer, ηα is a piecewise polynomial:

ηα(y) =
(2π)2α

(−1)α−1(2α)!
B2α({y})

with Bm a Bernouilli polynomial of even degree m,

B2(y) = y2 − y +
1

6
, B4(y) = y4 − 2y3 + y2 − 1

30
, . . .

6/26

Hα is a RKHS with kernel Kα:

Kα(y, y
′) =

∑
u⊆{1:s}

γu
∏
j∈u

ηα(yj − y ′j),

where {1 : s} = {1, 2, . . . , s}, ηα is a known periodic function of a
single variable, given by

ηα(y) =
∑
h ̸=0

e2πihy

|h|2α
,

For α an integer, ηα is a piecewise polynomial:

ηα(y) =
(2π)2α

(−1)α−1(2α)!
B2α({y})

with Bm a Bernouilli polynomial of even degree m,

B2(y) = y2 − y +
1

6
, B4(y) = y4 − 2y3 + y2 − 1

30
, . . .

7/26

Given a real-valued function f defined on [0, 1]s , and points
t1, t2, . . . , tn, the kernel interpolant based on these points takes
the form

fn(y) =
n∑

k=1

akKα(tk , y), y ∈ [0, 1]s ,

where the coefficients are determined by

fn(tk) = f (tk), for k = 1, · · · , n.

=⇒
n∑

k=1

Kα(tk , tk ′) ak = f (tk ′) , k ′ = 1, . . . , n.

7/26

Given a real-valued function f defined on [0, 1]s , and points
t1, t2, . . . , tn, the kernel interpolant based on these points takes
the form

fn(y) =
n∑

k=1

akKα(tk , y), y ∈ [0, 1]s ,

where the coefficients are determined by

fn(tk) = f (tk), for k = 1, · · · , n.

=⇒
n∑

k=1

Kα(tk , tk ′) ak = f (tk ′) , k ′ = 1, . . . , n.

8/26

Good choice for {t1, . . . , ts}
Advocated by Zeng, Leung, Hickernell 2004, and Zeng, Kritzer, Hickernell 2009.

Take the interpolation points to be lattice points:

tk =

{
kzgen

n

}
, k = 1, . . . , n,

with zgen = (z1, . . . , zs) ∈ {1, 2, . . . , n − 1}s .

9/26

Example of a (good) lattice

s = 2, n = 34, zgen = (1, 21)

0 1

1

tk :=

{(
k

34
,
21k

34

)}
, k = 1, . . . , 34

10/26

Lattice points give a major simplification:

The matrix elements become

Kα(yk , yk ′) = Kα

({
(k − k ′)zgen

n

}
, 0

)
.

So the interpolation matrix is a circulant matrix, making it easy to
invert by FFT – needs only O(n ln n) flops.

10/26

Lattice points give a major simplification:

The matrix elements become

Kα(yk , yk ′) = Kα

({
(k − k ′)zgen

n

}
, 0

)
.

So the interpolation matrix is a circulant matrix, making it easy to
invert by FFT – needs only O(n ln n) flops.

11/26

With product weights the method is fast

Product weights take the form

γu =
∏
j∈u

γj .

=⇒ Kα(y, y
′) =

s∏
j=1

(
1 + γjη(yj − y ′j)

)
.

For product weights the method can compute fn(y) at m arbitrary
points y in a time of order

O(Tn︸︷︷︸
f (tk)∀k

+ n ln n︸ ︷︷ ︸
lin. sys.

+ snm︸︷︷︸
kernel evals.

),

Here T is the time for a single function evaluation.

This is rather fast!

12/26

How to choose zgen?

We choose zgen to give a small Worst-Case L2 error for f ∈ Hα.

The worst-case L2 error for an algorithm A : H → L2 is

e(A, L2,H) := sup{∥f − A(f)∥L2 : f ∈ H, ∥f ∥H ≤ 1}.

For A = A∗. where A∗f := fn, and H = Hα, how to estimate the
worst-case L2 error?
We get computable upper bound on the worst-case error for kernel
interpolation algorithm A∗ (for an average choice of zgen), by using
the optimal property of reproducing kernel interpolation.

zgen is then chosen by a “component by component” (CBC)
construction: fix z1 = 1, and then in turn fix z2, . . . , zs by
minimising the upper bound for dimensions 2, . . . , s repsectively ,
keeping all earlier components fixed.

13/26

The L2 error

Recall: The worst-case L2 error for an algorithm A : Hα → L2 is

e(A, L2,Hα) := sup{∥f − A(f)∥L2 : f ∈ Hα, ∥f ∥Hα ≤ 1}.

Since A∗f := fn is linear this implies

∥f − A∗(f)∥L2 ≤ e(A∗, L2,Hα)× ∥f ∥Hα for f ∈ Hα.

14/26

The KKKNS L2 error bound is: for all λ ∈ (1/2α, 1],

∥f−A∗(f)∥L2 ≤
κ

n1/4λ

1 +
∑

∅≠u⊆{1:s}

|u|γλu [2ζ(2αλ)]|u|
1/2λ

×∥f ∥Hα .

▶ No matter how we choose the weights, the predicted ultimate
convergence rate is arbitrarily close to α/2. (Take λ arbitrarily
close to 1/2α.)

▶ A convergence rate of n−α/2 for the worst-case L2 error in Hα

is known to be best possible, given that we use lattice points
(Byrenheid, Kämmerer, Ulrich and Volkmer, 2017).

▶ (It is suboptimal if we are free to choose any points – the optimal

rate for L2 approximation in Hα is n−α.)

15/26

Parametric PDE example
V Kaarnioja, Y Kazashi, F Kuo, F Nobile, IHS, Numer. Math. ’22

−∇
(
a(x, y)∇u(x, y)

)
= x2, x ∈ D, y ∈ Us := [0, 1]s ,

u(x, y) = 0, x ∈ ∂D, y ∈ Us ,

in the domain D = (0, 1)2, with

a(x, y) := 1 +
s∑

j=1

sin(2πyj)ψj(x), x ∈ D, y ∈ Us ,

where
ψj(x) = c j−θ sin

(
jπx1

)
sin

(
jπx2

)
,

with θ > 1 and c > 0 variable,

and with s = 10 or 100 or

16/26

The KKKNS error bound:

For all λ ∈ (1
2α , 1],

√∫
D

∫
[0,1]s

|u(x, y)− un(x, y)|2dydx ≤ κ∥q∥H−1(D)n
1/4λCs(λ)

Cs(λ) :=

(
1 +

∑
∅≠u⊆{1:s}

|u|γuλ[2ζ(2αλ)]|u|
)1/2λ

×
(∑

u⊆{1:s}

1

γu

(∑
mu∈{1:α}|u|

|mu|!
∏
j∈u

(b
mj

j S(α,mj))

)2)1/2

.

Note that both factors depend on the weights γu.

17/26

The KKKNS weights

For u ̸= ∅, and α = 1 or 2,

γu :=
∑

mu∈{1:α}|u|
(|mu|!)

2
1+λ

∏
j∈u

(
(c j−θ/amin))

mj√
2e1/eζ(2αλ)

) 2
1+λ

.

For these weights the error bound was shown in KKKNS to be

∥u − un∥L2(D×U) ≤ Cδn
−α/2+δ ,

where Cδ (which is known explicitly!) is independent of s.

17/26

The KKKNS weights

For u ̸= ∅, and α = 1 or 2,

γu :=
∑

mu∈{1:α}|u|
(|mu|!)

2
1+λ

∏
j∈u

(
(c j−θ/amin))

mj√
2e1/eζ(2αλ)

) 2
1+λ

.

For these weights the error bound was shown in KKKNS to be

∥u − un∥L2(D×U) ≤ Cδn
−α/2+δ ,

where Cδ (which is known explicitly!) is independent of s.

18/26

Numerical results for θ = 1.2, c = 0.2/
√
6, α = 1

19/26

Numerical results for θ = 1.2, c = 0.4/
√
6, α = 1

20/26

The weights used above were not product weights!

They were more complicated (“SPOD”) weights:

γu :=
∑

mu∈{1:α}|u|
(|mu|!)

2
1+λ

∏
j∈u

(
(c j−θ/amin))

mj√
2e1/eζ(2αλ)

) 2
1+λ

.

For these weights the cost (Cools, Kuo, Nuyens, IHS 2019(2)) is

O(Tn + n ln n + s2nm);

and the cost for computing z is O(sn ln n + s3n).

Recall: product weights

O(Tn︸︷︷︸
f (tk)∀k

+ n ln n︸ ︷︷ ︸
lin. sys.

+ snm︸︷︷︸
kernel evals.

),

and the cost for computing z is O(sn ln n).

20/26

The weights used above were not product weights!

They were more complicated (“SPOD”) weights:

γu :=
∑

mu∈{1:α}|u|
(|mu|!)

2
1+λ

∏
j∈u

(
(c j−θ/amin))

mj√
2e1/eζ(2αλ)

) 2
1+λ

.

For these weights the cost (Cools, Kuo, Nuyens, IHS 2019(2)) is

O(Tn + n ln n + s2nm);

and the cost for computing z is O(sn ln n + s3n).

Recall: product weights

O(Tn︸︷︷︸
f (tk)∀k

+ n ln n︸ ︷︷ ︸
lin. sys.

+ snm︸︷︷︸
kernel evals.

),

and the cost for computing z is O(sn ln n).

21/26

Can we get as good results with product weights?

YES WE CAN (and even better)! We use serendipitous weights.
V Kaarnioja, F Kuo, IHS, in progress

[“Serendipity” – happy discovery by accident] Because the SPOD
weights are much too large, we tried dropping the factorials:

Recall γKKKNS
u :=

∑
mu∈{1:α}|u|

(|mu|!)
2

1+λ︸ ︷︷ ︸
OMIT!

∏
j∈u

(
(c j−θ /amin)

mj√
2e1/eζ(2αλ)

) 2
1+λ

.

=⇒ γseru =
∏
j∈u

α∑
mj=1

(
(c j−θ/amin)

mj√
2e1/eζ(2αλ)

) 2
1+λ

,

leading to the same error bound, with a dufferent constant, no
longer independent of s.

22/26

Numerical results for θ = 1.2, c = 0.2/
√
6, α = 1

23/26

Numerical results for θ = 1.2, c = 0.4/
√
6, α = 1

24/26

That hardest problem, but with s = 1000

25/26

Summary

High-dimensional approximation in a realistic application

▶ Approximation can be both mathematically rigorous and
feasible for large dimensionality and large number of points.

▶ The cost is merely linear in s IF we use periodic random
variables and serendipitous weights.

▶ The probability model is the same as for GPC with Chebyshev
of 1st kind as weight function.

▶ Serendipitous weights are seen to give excellent results even
for hard high-dimensional problems.

26/26

The rate is often much better than predicted!

In all these cases (all with α = 1) the rate is much bettter than
predicted above. Why? Because:

The solution of the parameteric PDE is really smooth, and in
particular lies in H2α.

Kaarnioja, Kuo and Sloan 2023 show that in this case the
asymptotic L2 error convergence rate is doubled, to n−α.

