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1. Real-life problem
This study aims to describe the use of the INLA-SPDE Bayesian approach by using Generalized Additive Models to predict the changes in
extreme weather phenomena as maximum precipitation and dry spells on a high-resolution map over the years 1972-1982 and 2012-2022 in Austria.
Our spatio-temporal model is based on an additive framework to assess the effect of explanatory variables: elevation and latitude, resulting in a
vector of covariates xt and the spatio-temporal random effect zt on the data yt. The spatial dependency follows a Matérn model, and the temporal
dependency an AR(1) process. Rewriting the model in a hierarchical form helps to represent all the spatio-temporal variability that may have an effect
on the rain data yt. The goal is to estimate parameters and interpret climatic variability over each 10 year period for different rain patterns.

2. Capturing dependencies
Let t represent time and s the spatial variable.
Whittle noted in 1954 and 1963 that the so-
lution z(s, t) of the linear fractional stochastic
partial differential equation (SPDE)

∂

∂t
(κ(s)2 − ∆)τ(s)z(s, t) = W(s, t) (1)

with (s, t) ∈ R2 × R, and spatially varying κ(s)
and τ(s) is a non-stationary Gaussian ran-
dom field (GRF) with Matérn covariance
function. The Matérn covariance of two points
which are a distance r apart is given by:

Σ := C(r) = σ2
C

Γ(1)(κ||r||)K1(κ||r||).

In 2011 Lindgren et.al. found an explicit link
between the GRF and a Gaussian Markov
random field (GMRF). The key point is that
the covariance function and the dense covari-
ance matrix of a GRF are substituted, respec-
tively, by a neighbourhood structure, see the pic-
ture below, and by a sparse precision matrix,
QS = Σ−1, that together define a GMRF. The
GRF is then approximated by:

z(s, t) ≈ z̃(s, t) =
N∑

j=1
ψj(s, t)zj , (2)

with basis functions ψj(s, t) = ψs
j (s)ψt

j(t) and
z = (z1, . . . , zN )T a collection of Gaussian
weights with z ∼ N(0, Q−1) and a separable
covariance matrix Q = QT ⊗QS .

The solution z(s, t) is what allows to efficiently
compute the spatial and temporal autocorrela-
tion structure of a dataset by using the separa-
blility ansatz for covariance functions: in
the data models we account for spatial depen-
dencies through the precision matrix QS and for
temporal dependencies through an AR(1) pro-
cess, represented by its precision matrix QT .

left: continuously indexed spatial GRF
right: corresponding FE representation
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3. Generalized additive models for the data
Assume the rain data y(si, t) is measured at location si, i = 1, . . . , n and time t = 1, . . . , T and, as
all other variables, stored in a vector, i.e. yt := (y(s1, t), . . . , y(sn, t))T . The generalized additive
model for the data is given by a link function g relating the expected value µt of yt to the linear
predictor ηt via

g(µt) = ηt = α+ xtβ + zt, (3)
zt = azt−1 + wt, wt ∼ N(0, Q−1

S ), |a| < 1 (4)

where xt denotes the vector of covariates, wt spatially correlated innovations and zt represents (2)
with zt ∼ N(0, Q−1) and Q = QT ⊗QS . The observations yt are modelled differently for each setup:

1. Maximum precipitation with blended generalized extreme value distribution:

yt ∼ bGEV(ηt, log(σ), tail).

2. Dry spells with binomial distribution:

yt ∼ Bin(Ntrials, logit−1(ηt)).

4. Integrated Nested Laplace Approximations (INLA)
For Bayesian inference we rewrite the models above in a hierarchical form which can then be
estimated using the INLA algorithm proposed by Rue et al. in 2009. INLA is an effective al-
ternative to MCMC methods for latent Gaussian field models. Consider that the vector of
latent effects ξt = {ηt, α, β, zt} has the structure of a GMRF and θBin = {σ2

w, σ
2
e , a, κ, τ} or

θbGEV = {σ2
w, σ

2
e , a, κ, τ, σ, tail} represent the hyperparameter vectors for the respective setup. The

joint posterior distribution is given by

π(ξt, θ|yt) ∝ π(θ)π(ξt|θ)
T∏

t=1
π(yt|ξt, θ).

However, we are interested in the marginal distributions of the latent field and of the hyperpa-
rameters, i.e π(ξt|yt) and π(θi|yt).

5. Results
First discretise space through a mesh that would create an artificial set of neighbours so we can
calculate the autocorrelation between points through (1). After triangulating Austria with 1385
vertices, the main interest resides in spatial prediction of ηt at unobserved locations, i.e. below
the posterior predictive mean of dry spells for the early (1972-1982) and late (2012-2022) time period.
For maximum precipitation we computed the difference in return values of a 50 year return period.


