
LATEX TikZposter

Advanced UQ Algorithms and Turn-Key HPC via UM-Bridge

Linus Seelinger1, Anne Reinarz2, Robert Scheichl1

Institute for Applied Mathematics, Heidelberg University1

Department of Computer Science, Durham University2

Advanced UQ Algorithms and Turn-Key HPC via UM-Bridge

Linus Seelinger1, Anne Reinarz2, Robert Scheichl1

Institute for Applied Mathematics, Heidelberg University1

Department of Computer Science, Durham University2

Accelerating UQ from Prototype to HPC

Realistic UQ problems can be extremely costly =⇒ Need to combine best of UQ, numerical
models and HPC to solve them!

Uncertainty Quantification
Methods

High-Performance
Computing

Numerical Models

The resulting complexity, need for expert knowledge across three fields and technical barriers
(incompatible languages, parallelization paradigms etc.) are holding back both UQ method
development and widespread adoption of UQ.

UM-Bridge introduces a microservice-inspired architecture for UQ software, offering separa-
tion of concerns between experts.

Uncertainty Quantification
Methods

High-Performance
Computing

Numerical Models

UM UM

Gains: Can now link arbitrary UQ and model codes through a simple interface, define repro-
ducible benchmarks, and transparently scale UQ applications to clusters.
=⇒ UM-Bridge accelerates development along all stages and enables complex applications!

UM-Bridge

A model in UQ is often just a function F : Rn → Rm taking a parameter vector onto a
model outcome. In addition, Jacobians or Hessians may be required.
UM-Bridge [1] provides this mathematical ”interface”as an equally universal software interface:

UQ and model are run as independent applications, exchanging model evaluation requests
and results via UM-Bridge. Behind the scenes, UM-Bridge is using network communication,
and can therefore link arbitrary programming languages and frameworks.

Easy to use integrations are available for C++, Python, R, and Matlab. Current framework
support includes emcee, MUQ, PyMC, QMCPy, Sparse Grids Matlab Kit, tinyDA, and TT
Toolbox.

With these integrations, implementing a model comes down to implementing a simple class,
and UQ codes can query them through regular function calls.

Containerized Models

UM-Bridge models can be containerized for portability and reproducibility:

CONTAINER

 ModelUQ UM UM
HTTP

Containerized models can easily be published or shared between collaborators, and no
machine-specific software setup is needed to run them.
=⇒ Separation of concerns between model and UQ experts!

Example: Run the published tsunami model container (from the application on the right) on
your system via:

docker run -p 4242:4242 linusseelinger/model-exahype-tsunami

Request model evaluation F (θ) for parameter vector (18, 100)⊤ from a Python script:

model = umbridge.HTTPModel("http://localhost:4242", "forward")

model([[18.0, 100.0]])

The exact same request can also be performed in C++ with no change to the model:

umbridge::HTTPModel model("http://localhost:4242", "forward");

model.Evaluate({{18.0, 100.0}});

UQ Benchmark Library

We provide a community-driven collection of UQ models and benchmark problems, all avail-
able as ready-to-run containers supporting UM-Bridge.

The library currently contains >20 ready-to-run models and UQ problems from >15 con-
tributors across >10 institutions.

→ https://um-bridge-benchmarks.readthedocs.io

Turn-Key Cloud Computing for UQ

UM-Bridge provides a reusable kubernetes configuration for running parallel model instances
in the cloud, automatically distributing work among them.

KUBERNETES

CONTAINER

UM Load BalancerParallel UQ Client UM 1,...*
UM Model ServerUM

There is no need to adapt model or UQ code, since both are oblivious of the cluster. Simple
thread-parallel UQ codes running on a laptop can now transparently offload model evaluations
to HPC-scale clusters! The approach is proven to scale to thousands of processor cores [3].

Applications

Applications in [3] demonstrate the power of UM-Bridge. They involve a variety of UQ codes
applied to a variety of models on different systems. No modification to UQ codes or models
was necessary beyond a simple UM-Bridge integration.

Application UQ Parallelization System System Model

L2-Sea SGMK
Matlab

Matlab parfor Laptop ↔ GCP (48 cores) L2-Sea
Fortran

Composites QMCPy
Python

Threads Workstation ↔ Workstation
(k3s)

DUNE
C++

Tsunami tinyDA
Python

Ray Workstation ↔ Workstation
GCP (2800 cores)

ExaHyPE
C++, codegen

The tsunami model (top right) is coupled with a Multilevel Delayed Acceptance method
implemented in tinyDA, using a Gaussian Process surrogate as coarsest level (left). The
Gaussian Process surrogate was evaluated directly on the workstation, while costly numerical
model runs were offloaded to a 2800 core kubernetes cluster on Google Cloud Platform. Using
UM-Bridge, this setup was developed in a few days, while a previous monolithic approach
[2] took months to complete.

Future Work

Support for SLURM job scheduling is planned, extending the parallel architecture from ku-
bernetes to HPC systems. The Gaussian Process code from the tsunami application will
be further developed into a reusable, general-purpose microservice between UQ and models.
Finally, the benchmark library will be published soon.

Resources

Mail: mail@linusseelinger.de
GitHub: www.github.com/UM-Bridge/umbridge
Docs, tutorial and benchmarks: https://um-bridge-benchmarks.readthedocs.io

[1] JOSS
2023

UM-Bridge: Uncertainty Quantification and Modeling Bridge
L. Seelinger, V. Cheng-Seelinger, A. Davis, M. Parno, A. Reinarz

[2] SC ’21
2021

High Performance UQ with Parallelized Multilevel MCMC
L. Seelinger, A. Reinarz, L. Rannabauer, M. Bader, P. Bastian, R. Scheichl

[3] Arxiv
2023

Lowering the Entry Bar to HPC-Scale UQ
L. Seelinger, A. Reinarz, J. Bénézech, M. Lykkegaard, L. Tamellini, R. Scheichl

